Динамика показателей глутатионовой системы у пациентов с несъемными ортопедическими протезами

Н.А. ПАНАХОВ, д.м.н., профессор, зав. кафедрой А.Э. КЕРИМОВА, диссертант Кафедра ортопедической стоматологии Азербайджанский медицинский университет, г. Баку

Dynamics of glutathione system indices in patients with non-removable orthopedic prostheses

N.A. PANAKHOV, A.E. KERIMOVA

Резюме

Определен уровень тиоловых SH-групп и активность глутатионредуктазы в ротовой жидкости пациентов с несъемными керамическими и металлокерамическими конструкциями.

Исследованы 57 пациентов с металлокерамическими и керамическими несъемными мостовидными протезами. Средний возраст пациентов составил 36,30 ± 3,55 лет. В исследование вошли пациенты, у которых отсутствовало не более трех зубов. Установлены всего 137 несъемных мостовидных протезов, из них металлокерамических – 61, цельнокерамических – 76. Пациенты были разделены на две группы: І группа – 25 пациентов с металлокерамическими съемными мостовидными реставрациями; ІІ группа – 32 пациента с цельнокерамическими реставрациями.

Спустя 6 месяцев после протезирования по сравнению с исходным концентрация тиоловых групп у пациентов с металлокерамическими протезами увеличилась на 21,1%, у пациентов с керамическими протезами — на 27,2% (р < 0,05). Через 6 месяцев активность фермента у пациентов I группы была выше исходной активности на 27,4% (р < 0,05) и выше активности, которая отмечалась через 7 дней, на 21,6%. На этом этапе исследования активность ГР была ниже контрольной на 7,8%. У пациентов II группы через 6 месяцев после протезирования активность фермента была выше исходной на 45,6% (р < 0,05) и на 26,4% (р < 0,05) выше, чем через 7 дней. У пациентов с керамическими реставрациями активность ГР через 6 месяцев практически не отличалась от контрольной.

Ключевые слова: ротовая жидкость, протезирование, несъемные металлокерамические, керамические протезы, тиоловые группы, глутатионредуктаза.

Abstract

The level of thiol SH-groups and the activity of glutathione reductase in the oral fluid of patients with non-removable ceramic and cermet structures have been determined.

57 patients with cermet and ceramic non-removable bridges were examined. The average age of the patients was 36.3 ± 3.55 years. The study included patients who did not have more than 3 teeth. A total of 137 non-removable bridges were found, of which 61 were ceramic-metal and 76 ceramics were whole-ceramic. The patients were divided into two groups: group I - 25 patients with cermet removable bridge restorations; Group II - 32 patients with whole-ceramic restorations.

After 6 months. after prosthetics in comparison with the initial, the concentration of thiol groups in patients with cermet prosthesis increased by 21.1%, in patients with ceramic prostheses - by 27.2% (p <0.05). After 6 months. the activity of the enzyme in patients of the I group was higher than the initial activity by 27.4% (p <0.05) and above the activity, which was observed after 7 days, by 21.6%. At this stage of the study, the GR activity was below the control one by 7.8%. In patients of group II after 6 months. after prosthetics, the enzyme activity was higher than the baseline by 45.6% (p <0.05) and 26.4% (p <0.05) higher than 7 days later. In patients with ceramic restorations, GR activity after 6 months. practically did not differ from the control one.

Key words: oral liquid, prosthetics, non-removable metal-ceramic, ceramic prostheses, thiol groups, glutathione reductase.

Введение

Одной из серьезных проблем ортопедической стоматологии является вторичная частичная адентия. Поэтому протезирование остается одним из востребованных направлений, успешность которого зачастую связана с правильным выбором вида реставрации [1, 10, 13].

В настоящее время, наряду с несъемными металлокерамическими протезами, которым отда-

ет предпочтение большинство пациентов, также применяются цельнокерамические реставрации [5, 9, 10]. Исходя из того, что цельнокерамические мостовидные протезы представляют собой более эстетические и функциональные конструкции, в настоящее время все большее внимание уделяется совершенствованию таких реставраций [9]. Однако некоторые исследователи считают, что металлокерамические реставрации являются лучшим вари-

антом функционального восстановления при наличии дефектов более трех зубов, отмечая при этом больший предел прочностей, в сравнении с цельнокерамическими протезами [14]. В то же время в литературе приводятся данные о негативном влиянии несъемных металлокерамических протезов на краевой пародонт [2]. Причиной негативного влияния могут быть кариозное разрушение твердых тканей зубов под искусственной коронкой, расцементирование протезов, травма десны во время препарирования зуба, травма, вызванная некачественно изготовленными временными коронками, признаки воспаления и др. [6-8]. К недостаткам цельнокерамических протезов относят ограниченную протяженность мостовидных протезов и высокую, по сравнению с металлокерамическими протезами, стоимость [14]. На фоне этих недостатков цельнокерамические протезы хотя и менее упруги, чем металлокерамические, обладают стабильностью, биосовместимостью, эстетичностью, цветовой устойчивостью, инертностью и нерастворимостью в жидкостях ротовой полости, у них нет возможных обнажений металла (особенно на пограничных поверхностях), налет образуется редко и др. [9].

Тем не менее, несмотря на новые технологии и материалы, процент осложнений после протезирования не имеет тенденции к снижению. Так, сохраняющийся достаточно долгое время в полости рта воспалительный процесс, являющийся результатом действия патогенной микробной флоры и ее активизации при наличии зубных протезов, свидетельствует о нарушении состояния местных факторов защиты [3, 4]. Поэтому разработка прогностических критериев оценки характера патологических изменений в ротовой полости при протезировании актуальна для ортопедической стоматологии.

Одним из неспецифических критериев может быть нарушение равновесия между прооксидантами и компонентами системы антиоксидантной защиты и возникший при этом окислительный стресс, сопровождающийся разрушением клеточных мембран в организме, выраженность которого связана со степенью тяжести патологического процесса клеточнотканевых структур ротовой полости [3].

Ведущим звеном в защите клеток ротовой полости от действия высокотоксичных агентов и в поддержании редокс-потенциала внутриклеточной среды является глутатионовая система, которая кроме глутатиона, включает, в частности, глутатионредуктазу [3, 12].

Однако в литературе недостаточно информации о соотношении про- и антиоксидантной системы в ротовой жидкости при наличии протезов в ротовой полости.

ЦЕЛЬ ИССЛЕДОВАНИЯ

Определение уровня тиоловых SH-групп и активности глутатионредуктазы в ротовой жидкости пациентов с несъемными керамическими и металлокерамическими конструкциями.

МАТЕРИАЛ И МЕТОДЫ ИССЛЕДОВАНИЯ

Под наблюдением находились 57 пациентов с металлокерамическими и керамическими несъемными мостовидными протезами. Мужчин было 22 (38,6%), женщин – 35 (61,4%). Возраст пациентов колебался от 29 до 46 лет, средний возраст составил

36,30 ± 3,55 лет. В исследование вошли пациенты, у которых отсутствовало не более трех зубов. Установлены всего 137 несъемных мостовидных протеза, из них металлокерамических – 61, цельнокерамических – 76.

В зависимости от вида установленных конструкций пациенты были разделены на две группы: І группу составили 25 пациентов с металлокерамическими съемными мостовидными реставрациями; ІІ группу — 32 пациента с цельнокерамическими реставрациями. Контрольную группу составили 18 добровольцев (7 мужчин, 11 женщин) с неповрежденными зубными рядами в возрасте от 28 до 44 лет (средний возраст 35,10 ± 2,83 лет).

Исследования проводили до протезирования, через неделю и 6 месяцев после протезирования. Материалом для исследования была нестимулированная ротовая жидкость, которую пациент утром натощак, до чистки и полоскания рта, сплевывал в стерильную пробирку. После этого полученную ротовую жидкость центрифугировали 10 мин. при 3000 об./мин. Надосадочную часть осторожно отсасывали в пластиковые пробирки и хранили при температуре –30°C.

Содержание тиоловых (SH) групп в ротовой жидкости проводили спектрофотометрическим методом на спектрофотометре СФ-46 при длине волны 412 нм по реакции взаимодействия 5,5-дитибис (2-нитробензойной) кислоты со свободными SH-группами белков [5, 15].

Активность глутатионредуктазы (ГР) определяли по методу Horn H., Bruns F. (1958) по реакции восстановления окисленного глутатиона NADP-H2. Для этого в кювету вносили 0,05 мл ротовой жидкости, которую добавляли в раствор, содержащий 0,1 М калий-фосфатный буфер (1,8 мл, pH=7,0), 1 мМ раствор ЭДТА и 0,1 мл раствора окисленной формы глутатиона. Затем, через 3 минуты, в раствор вносили 0,1 мл раствора НАДФ•Н и измеряли экстинкцию исследуемого раствора при длине волны 340 нм против воды. Активность фермента выражали в мкмоль/мин. на 1 мг белка [5].

Исследования проводились в соответствии с Хельсинкской декларацией Всемирной ассоциации «Этические принципы научных и медицинских исследований с участием человека». У обследованных пациентов было получено информированное согласие на участие в исследовании.

Статистическую обработку полученных данных проводили с использованием стандартных пакетов программы Statistica, версия 7.0 (США). Использовали стандартные методы медицинской статистики (вычисление средних стандартных отклонений) и t-критерий Стьюдента. Результаты подсчитаны в виде $M \pm SD$, где M – среднее значение (average), SD – стандартное отклонение среднего (Standard Deviation). Достоверность полученных данных отмечена при значении р < 0,05.

РЕЗУЛЬТАТЫ И ИССЛЕДОВАНИЯ И ИХ ОБСУЖДЕНИЕ

Согласно полученным результатам, исходно концентрация SH-групп в ротовой жидкости у пациентов со вторичной адентией была ниже контрольной (рис. 1).

Содержание тиоловых (SH) групп в ротовой жидкости в контрольной группе составило в среднем $4,02\pm0,53$ мкмоль/л. До начала протезирования у

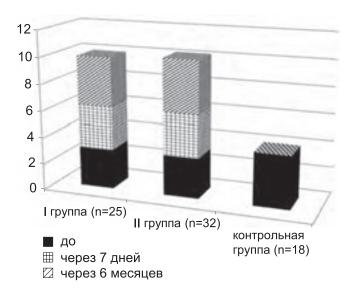


Рис. 1. Уровень SH-групп (мкмоль/л) у пациентов в период обследования

пациентов обеих групп средний уровень SH-групп существенно не отличался между собой, составив соответственно $3,03 \pm 0,47$ и $3,09 \pm 0,82$ мкмоль/л. Разница в уровне этого показателя с контрольной группой составила 22,1% и 23,1% соответственно в І и II группах. Спустя 7 дней после протезирования содержание тиоловых групп в ротовой жидкости повысилось в обеих группах. Так, у пациентов с металлокерамическими протезами концентрация SH-групп на этом этапе исследования $(3,24 \pm 0,68 \text{ мкмоль/л})$ повысилась на 6,9% по сравнению с исходным показателем, а разница с контрольным показателем соответствовала 19,4%. У пациентов с керамическими реставрациями (3,18 ± 0,77 мкмоль/л) разница составила соответственно 2,9% и 20,9%. Спустя 6 месяцев после протезирования уровень тиоловых групп в ротовой жидкости продолжил повышение, но в группе с керамическими конструкциями повышение носило выраженный характер. Сравнительный анализ показал, что у пациентов I группы содержание SH-групп повысилось на 13,3% относительно предыдущего показателя, а разница с контрольным показателем составила 8,7%. У пациентов ІІ группы концентрация тиоловых групп в ротовой жидкости спустя 6 месяцев в среднем составила 3.93 ± 0.62 мкмоль/л, что было на 23,6% выше показателя, отмеченного через неделю, и практически не отличалось от контрольного показателя. При сравнении показателей SH-групп после конечного этапа протезирования с исходным выявлено, что концентрация тиоловых групп у пациентов с металлокерамическими протезами увеличилась на 21,1%, а у пациентов с керамическими протезами – на 27,2% (p < 0,05).

Следовательно, при керамической реставрации позитивная динамика протезирования была более выраженной и статистически значимой.

Схожая динамика наблюдалась при исследовании активности глутатионредуктазы (ГР). У пациентов обеих групп до начала протезирования активность этого фермента по сравнению с контрольной группой была низкой (рис. 2).

Активность фермента ГР у пациентов до начала протезирования по сравнению с контрольной была снижена на 27,6% (р < 0,05) и 31,9% (р < 0,05) в I и

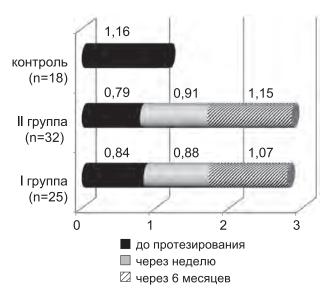


Рис. 2. Динамика активности глутатиноредуктазы (мкмоль-мин/мл) в группах обследования

II группах соответственно. Спустя неделю после протезирования активность ГР повысилась и разница с контрольной величиной у пациентов І группы составила 24,1%, а разница с исходной активностью -4,8%. У пациентов II группы наблюдалось аналогичное изменение активности фермента. Через неделю после протезирования керамическими конструкциями активность ГР повысилась и превысила исходную на 15,2%. В то же время разница с контрольным показателем снизилась и составила 21,6%. Спустя 6 месяцев активность фермента у пациентов I группы составила в среднем 1,07 ± 0,22 мкмоль-мин/мл, что было выше исходной активности на 27,4% (р < 0,05) и выше активности, которая отмечалась через 7 дней, на 21,6%. На этом этапе исследования активность ГР была ниже контрольной на 7,8%. У пациентов II группы через 6 месяцев после протезирования активность фермента была выше исходной на 45,6% (p < 0.05) и на 26,4% (p < 0.05) выше, чем через 7 дней. У пациентов с керамическими реставрациями активность ГР через 6 месяцев практически не отличалась от контрольной.

Таким образом, у пациентов со вторичной адентией отмечается низкий уровень SH-групп и низкая активность ГР в ротовой жидкости. Процесс протезирования оказывает позитивное влияние на эти показатели, что в определенной степени проявляется уже спустя 7 дней. Можно предположить, что этот этап переходный, и в этот период имеет место адаптация к установленным протезам. Спустя 6 месяцев после протезирования отмечается восстановление активности ГР и повышение концентрации тиоловых групп. Сниженный уровень SH-групп и низкая активность ГР, которые выявлялись у пациентов, указывают на недостаточность как неферментативного, так и ферментативного звена антиоксидантной защиты. Протезирование несъемными металлокерамическими и керамическими мостовидными реставрациями приводит к активности антиоксидантной защиты. Полученные нами результаты согласуются с данными литературы [3, 11, 12]. Необходимо отметить, что при протезировании керамическими конструкциями активность ферментативного звена антиоксидантной защиты была более выражена.

Выводы

- 1. У пациентов со вторичной адентией отмечается недостаточность антиоксидантной защиты, которая выражается в низком уровне тиоловых групп и сниженной активности глутатионредуктазы.
- 2. Протезирование несъемными металлокерамическими и керамическими мостовидными конструкциями приводит к активации антиоксидантной защиты уже через 7 дней, а спустя 6 месяцев выявленные сдвиги в антиоксидантной защите восстанавливаются.
- 3. Использование металлокерамических и керамических несъемных мостовидных протезов оказывает положительное влияние на окислительный статус ротовой полости, причем предпочтительными являются несъемные керамические мостовидные протезы.

СПИСОК ИСПОЛЬЗОВАННОЙ ЛИТЕРАТУРЫ

1. Галонский В. Г., Радкевич А. А., Пуликов А. С. и др. Клинические признаки, морфология тканей протезного ложа, методы реабилитации больных с эктодермальной дисплазией и врожденной адентией // Стоматология детского возраста и профилактика. 2011. Т. 10. № 4. С. 29-40.

Galonskiy V. G., Radkevich A. A., Pulikov A. S. i dr. Klinicheskie priznaki, morfologiya tkaney proteznogo lozha, metody reabilitatsii bol'nykh s ektodermal'noy displaziey i vrozhdennoy adentiey // Stomatologiya detskogo vozrasta i profilaktika. 2011. T. 10. №4. S. 29-40.

2. Жулев Е. Н. Металлокерамические протезы. – Н. Новгород: Изд-во НГМА, 2005. – 288 с.

Zhulev E. N. Metallokeramicheskie protezy. – N. Novgorod: Izd-vo NGMA, 2005. – 288 s.

3. Иванова А. В., Железный П. А., Антонов А. Р., Сафронов И. Д. Про- и антиоксидантный потенциал ротовой жидкости при зубочелюстном протезировании // Фундаментальные исследования. 2009. №2. С. 90-91.

Ivanova A. V., Zheleznyy P. A., Antonov A.R., Safronov I. D. Pro- i antioksidantnyy potentsial rotovoy zhidkosti pri zubochelyustnom protezirovanii // Fundamental'nye issledovaniya. 2009. №2. S. 90-91.

4. Кудрявцева Т. В., Чеминава Н. Р. Влияние минерального состава ротовой жидкости на стоматологическое и соматическое здоровье // Пародонтология. 2016. Т. 21. №4 (81). С. 17-23.

Kudryavtseva T. V., Cheminava N. R. Vliyanie mineral'nogo sostava rotovoy zhidkosti na stomatologicheskoe i somaticheskoe zdorov'e // Parodontologiya. 2016. T. 21. №4 (81). S. 17-23.

5. Медицинская лабораторная диагностика: программы и алгоритмы / под ред. А.И. Карпищенко. 3-е изд. – М.: ГЭОТАР-Медиа, 2014. – 696 с.

Meditsinskaya laboratornaya diagnostika: programmy i algoritmy / pod red. A.I. Karpishchenko. 3-e izd. – M.: GEOTAR-Media, 2014. – 696 s.

6. Петрикас О. А., Петрикас И. В., Ворошилин Ю. Г., Корольков А. В. Оценка функциональных возможностей периодонта опорных зубов адгезивных мостовидных протезов с помощью периотестирования // Пародонтология. 2010. № 3. С. 50-53.

Petrikas O.A., Petrikas I.V., Voroshilin Yu.G., Korol'kov A.B. Otsenka funktsional'nykh vozmozhnostey periodonta opornykh zubov adgezivnykh mostovidnykh protezov s pomoshch'yu periotestirovaniya // Parodontologiya. 2010. № 3. S. 50-53.

7. Сорокин Е. В. Особенности протезирования при частичной потере зубов в современной ортопедической стоматологии // Научное обозрение. Медицинские науки (Саратов). 2017. №4. С. 106-

Sorokin E. V. Osobennosti protezirovaniya pri chastichnoy potere zubov v sovremennoy ortopedicheskoy stomatologii // Nauchnoe obozrenie. Meditsinskie nauki (Saratov). 2017. №4. S. 106-109.

8. Трифонов Б. В., Копытов А. А., Агапов Н. Н., Анисимова О. О. Использование чисел Хаунсфилда как характеристики реставрационных материалов // Эндодонтия today. 2011. №1. С. 43-48.

Trifonov B. V., Kopytov A. A., Agapov N. N., Anisimova O. O. Ispol'zovanie chisel Khaunsfilda kak kharakteristiki restavratsionnykh materialov // Endodontiya today. 2011. №1. S. 43-48.

9. Халимская К. М. Аспекты цельнокерамического протезирования // Научное обозрение. Медицинские науки (Саратов). 2017. №3. С. 83-86.

Khalimskaya K. M. Aspekty tsel'nokeramicheskogo protezirovaniya // Nauchnoe obozrenie. Meditsinskie nauki (Saratov). 2017. №3. S. 83-86.

10. Цимбалистов А. В., Копытов А. А. Изменение гидродинамики пародонта опорных зубов в процессе адаптации к мостовидным протезам // Пародонтология. 2015. Т. 2. №75. С. 10-13.

Tsimbalistov A. V., Kopytov A. A. Izmenenie gidrodinamiki parodonta opornykh zubov v protsesse adaptatsii k mostovidnym protezam // Parodontologiya. 2015. T. 2. №75. S. 10-13.

- 11. Baudouin-Cornu P., Lagniel G., Kumar C. et al. Glutathione degradation is a key determinant of glutathione homeostasis // J. Biol. Chem. 2012. Vol.287. P. 4552-4561.
- 12. Chen Yi-Ju, Lu Cheng-Tsung, Lee Tzong-Yi, Chen Yu-Ju. dbGSH: a database of S-glutathionylation // Bioinformatics, 2014. Vol.30. Issue 16. P. 2386-2388.
- 13. Ho G. W., Matinlinna J. P. Insights on ceramics as dental materials. Part I: ceramic material types in dentistry // Springer. 2011. Vol. 3. Issue 3. P. 109-115.
- 14. Van Nort R., Barbour M.E. Introduction to dental Materials. 4-th ed. Edinburgh; New York: Mosby Elsevier, 2013. 246 p.
- 15. Wayner D. Radical-trapping antioxidants in vitro and in vivo // Bioelectrochem Bioenerg. 1987. №1-3. P. 219-229.

Поступила 26.02.2018

Координаты для связи с авторами: AZ1022, Азербайджан, г. Баку, ул. Бакиханова, д. 23 E-mail: ittihaf@yahoo.com

ООО «Поли Медиа Пресс»

КНИЖНАЯ ПОЛКА

48 страниц, более 50 фотографий. представляет брошюру в помощь врачу при работе с пациентом

«Болезни пародонта» (пособие для пациентов)

(издание четвертое)

Автор: А.Ю. Февралева

Брошюра содержит страницу пациента, где размещаются график посещений, рекомендации и назначения врача. Врач наглядно может объяснить причины возникновения, профилактику и этапы лечения заболеваний пародонта.

Издание максимально повысит знания вашего пациента о заболеваниях пародонта.

<u>Заказ</u>: (495) 781-2830, 956-93-70, (499) 678-26-58, (903)-969-0725, dostavka@stomgazeta.ru

