Preview

Endodontics Today

Advanced search

Effect of orthodontic adhesives modified with antibacterial nanoparticles on bond strength: literature review

https://doi.org/10.36377/ET-0027

Abstract

RELEVANCE. With the advent of nanotechnology, new dental products are being created with the addition of various nanoparticles to improve the quality of the material, as well as increase their durability and antibacterial therapy. Recently, nanoparticles of silver, calcium hydroxyapatite, calcium dioxide, magnesium, cinnamon and vanillin are included in orthodontic adhesives to prevent enamel demineralization during fixed appliance treatment. However, the strength of fixation of the bracket system to the tooth enamel plays an important role in resisting orthodontic and mechanical stress in the oral cavity to achieve precise control of tooth movement.

AIM. The purpose of this study is to provide an analytical review of laboratory studies on the shear bond strength of orthodontic adhesives modified with antibacterial nanoparticles.

MATERIALS AND METHODS. The eLibrary, PubMed and Google Scholar databases were queried for scientific articles published from 2019 to 2024 using the keywords: nanoparticles, orthodontics, bond strength, orthodontic adhesive, nanoadhesive. Thus, this article included 13 in vitro studies on the topic of shear adhesion strength of nanoadhesives, the remaining 40 scientific articles were devoted to the study of methods of using nanotechnologies in the orthodontic clinic, the properties of various nanoparticles and the problems of demineralization of dental tissue during the correction of dentoalveolar anomalies, their prevention.

CONCLUSION. Based on this analysis, it was found that most laboratory studies of orthodontic adhesives containing low concentrations of nanoparticles demonstrated positive antimicrobial potential while maintaining acceptable adhesive bond strength. However, further studies are needed in clinical settings, taking into account humidity and temperature changes in the oral cavity, to achieve the best mechanical performance and antibacterial effectiveness against biofilm-forming pathogens during orthodontic therapy.

About the Authors

H. Almokaddam
Peoples’ Friendship University of Russia named after Patrice Lumumba (RUDN University), Medical Institute
Russian Federation

Hayan Almokaddam – Postgraduate Student of the Department of Dentistry Pediatric Dentistry and Orthodontics

6 Miklukho-Maklaya Str., Moscow 117198


Competing Interests:

The authors declare no conflict of interests.



N. S. Tuturov
Peoples’ Friendship University of Russia named after Patrice Lumumba (RUDN University), Medical Institute
Russian Federation

Nikolay S. Tuturov – Cand. Sci. (Med.), Associate Professor, Head of the Department of Pediatric Dentistry and Orthodontics

6 Miklukho-Maklaya Str., Moscow 117198


Competing Interests:

The authors declare no conflict of interests.



I. Katbeh
Peoples’ Friendship University of Russia named after Patrice Lumumba (RUDN University), Medical Institute
Russian Federation

Imad Katbeh – Cand. Sci. (Med.), Senior Lecturer at the Department of Pediatric Dentistry and Orthodontics

6 Miklukho-Maklaya Str., Moscow 117198


Competing Interests:

The authors declare no conflict of interests.



A. Saleh
Peoples’ Friendship University of Russia named after Patrice Lumumba (RUDN University), Medical Institute
Russian Federation

Ahmad Saleh – Resident of the Department of Pediatric Dentistry and Orthodontics

6 Miklukho-Maklaya Str., Moscow 117198


Competing Interests:

The authors declare no conflict of interests.



I. Ibrahim
Peoples’ Friendship University of Russia named after Patrice Lumumba (RUDN University), Medical Institute
Russian Federation

Ibrahim Ibrahim – Postgraduate Student of the Department of Dentistry Pediatric Dentistry and Orthodontics

6 Miklukho-Maklaya Str., Moscow 117198


Competing Interests:

The authors declare no conflict of interests.



References

1. Zakrzewski W., Dobrzynski M., Dobrzynski W., Zawadzka-Knefel A., Janecki M., Kurek K. et al. Nanomaterials application in orthodontics. Nanomaterials. 2021;11(2):337. https://doi.org/10.3390/nano11020337

2. De Stefani A., Bruno G., Preo G., Gracco A. Application of nanotechnology in orthodontic materials: A state-of-the-art review. Dent J. 2020;8(4):126. https://doi.org/10.3390/dj8040126

3. Glowacka-Sobotta A., Ziental D., Czarczynska-Goslinska B., Michalak M, Wysocki M., Güzel E., Sobotta L. Nanotechnology for Dentistry: Prospects and Applications. Nanomaterials. 2023;13(14):2130. https://doi.org/10.3390/nano13142130

4. Mirhashemi A., Jazi L. Evaluation of the effect of antimicrobial nanoparticles on bond strength of orthodontic adhesives: A review article. Dent Res J. 2021;18(1):110. https://doi.org/10.4103/1735-3327.332104

5. An J.-S., Lim B.-S., Ahn S.-J. Managing oral biofilms to avoid enamel demineralization during fixed orthodontic treatment. Korean J Orthod. 2023;53(6):345–357. https://doi.org/10.4041/kjod23.184

6. Katyal D., Mohan R., Jain R.K., Nagesh S. Evaluation of antimicrobial and mechanical properties of a novel propolis-modified orthodontic primer: An in-vitro study. Cureus. 2023;15(10):e46716. https://doi.org/10.7759/cureus.46716

7. Shimpo Y., Nomura Y., Sekiya T., Arai C., Okada A., Sogabe K. et al. Effects of the dental caries preventive procedure on the white spot lesions during orthodontic treatment – An open label randomized controlled trial. J Clin Med. 2022;11(3):854. https://doi.org/10.3390/jcm11030854

8. Kumar V., Singh P., Arora V.K., Kaur S., Sarin S., Singh H. Assessment of effect of fixed orthodontic treatment on gingival health: An observational study. J Pharm Bioallied Sci. 2021;13(Suppl. 1):S425–S428. https://doi.org/10.4103/jpbs.JPBS_589_20

9. Rangrazi A., Daneshmand M.S., Ghazvini K., Shafaee H. Effects of magnesium oxide nanoparticles incorporation on shear bond strength and antibacterial activity of an orthodontic composite: An in vitro study. Biomimetics. 2022;7(3):133. https://doi.org/10.3390/biomimetics7030133

10. Khoroushi M, Kachuie M. Prevention and treatment of white spot lesions in orthodontic patients. Contemp Clin Dent. 2017;8(1):11–19. https://doi.org/10.4103/ccd.ccd_216_17

11. Jia A., Wang P., Tong F., Chen Z., Deng Y., Yao H. et al. Developing a novel enamel adhesive with amorphous calcium phosphate and silver nanoparticles to prevent demineralization during orthodontic treatment. J Funct Biomater. 2023;14(2):77. https://doi.org/10.3390/jfb14020077

12. Nafarrate-Valdez R.A., Martínez-Martínez R.E., Zaragoza-Contreras E.A., Áyala-Herrera J.L., Domínguez-Pérez R.A., Reyes-López S.Y. et al. Anti-adherence and antimicrobial activities of silver nanoparticles against serotypes C and K of Streptococcus mutans on orthodontic appliances. Medicina. 2022;58(7):877. https://doi.org/10.3390/medicina58070877

13. Taha A.A., Patel M.P., Hill R.G., Fleming P.S. The effect of bioactive glasses on enamel remineralization: A systematic review. J Dent. 2017;67:9–17. https://doi.org/10.1016/j.jdent.2017.09.007

14. Nahajowski M., Lis J., Sarul M. Orthodontic compliance assessment: A systematic review. Int Dent J. 2022;72(5):597–606. https://doi.org/10.1016/j.identj.2022.07.004

15. Toodehzaeim M.H., Zandi H., Meshkani H., Hosseinzadeh Firouzabadi A. The Effect of CuO nanoparticles on antimicrobial effects and shear bond strength of orthodontic adhesives. J Dent. 2018;19(1):1–5.

16. Shahabi M., Fazel S.M., Rangrazi A. Incorporation of chitosan nanoparticles into a cold-cure orthodontic acrylic resin: Effects on mechanical properties. Biomimetics. 2021;6(1):7. https://doi.org/10.3390/biomimetics6010007

17. Chung S.-H., Cho S., Kim K., Lim B.-S., Ahn S.-J. Antimicrobial and physical characteristics of orthodontic primers containing antimicrobial agents. Angle Orthod. 2017;87(2):307–312. https://doi.org/10.2319/052516-416.1

18. Alzainal A.H., Majud A.S., Al-Ani A.M., Mageet A.O. Orthodontic bonding: Review of the literature. Int J Dent. 2020;(1):8874909. https://doi.org/10.1155/2020/8874909

19. Reynolds I.R. A review of direct orthodontic bonding. Br J Orthod. 1975;2(3):171–178. https://doi.org/10.1080/0301228X.1975.11743666

20. Iglesias A., Flores T., Moyano J., Artés M., Gil F.J., Puigdollers A. In vitro study of shear bond strength in direct and indirect bonding with three types of adhesive systems. Materials. 2020;13(11):2644. https://doi.org/10.3390/ma13112644

21. Naguib G., Maghrabi A.A., Mira A.I., Mously H.A., Hajjaj M., Hamed M.T. Influence of inorganic nanoparticles on dental materials’ mechanical properties. A narrative review. BMC Oral Health. 2023;23(1):897. https://doi.org/10.1186/s12903-023-03652-1

22. Mary S.M., Ramakrishnan M., Sudalaimani Paulpan dian S.D., Rajeshkumar S., Pringle J. Application of nanoparticles in dentistry. Bioinformation. 2023;19(1):14–18. https://doi.org/10.6026/97320630019014

23. Malik S., Waheed Y. Emerging Applications of nanotechnology in dentistry. Dent J. 2023;11(11):266. https://doi.org/10.3390/dj11110266

24. Scribante A., Farahani M.R.D., Marino G., Matera C., Baena R.R., Lanteri V., Butera A. Biomimetic effect of nano-hydroxyapatite in demineralized enamel before orthodontic bonding of brackets and attachments: Visual, adhesion strength, and hardness in in vitro tests. BioMed Res. Int. 2020;(1):6747498. https://doi.org/10.1155/2020/6747498

25. Raura N., Garg A., Arora A., Roma M. Nanoparticle technology and its implications in endodontics: A review. Biomater Res. 2020;24(1):21. https://doi.org/10.1186/s40824-020-00198-z

26. Yin I.X., Zhang J., Zhao I.S., Mei M.L., Li Q., Chu C.H. The antibacterial mechanism of silver nanoparticles and its application in dentistry. Int J Nanomedicine. 2020;15:2555–2562. https://doi.org/10.2147/IJN.S246764

27. Eslamian L., Borzabadi-Farahani A., Karimi S., Saadat S., Badiee M.R. Evaluation of the shear bond strength and antibacterial activity of orthodontic adhesive containing silver nanoparticle, an in-vitro study. Nanomaterials. 2020;10(8):1466. https://doi.org/10.3390/nano10081466

28. Sánchez-Tito M., Tay L.Y. Effect of the addition of silver nanoparticles on the mechanical properties of an orthodontic adhesive. Saudi Dent J. 2024;36(2):359–363. https://doi.org/10.1016/j.sdentj.2023.11.021

29. Felemban N.H., Ebrahim M.I. The influence of adding modified zirconium oxide-titanium dioxide nano-particles on mechanical properties of orthodontic adhesive: an in vitro study. BMC Oral Health. 2017;17(1):43. https://doi.org/10.1186/s12903-017-0332-2

30. Mahendra T.V.D., Muddada V., Gorantla S., Karri T., Mulakala V., Prasad R. et al. Evaluation of antibacterial properties and shear bond strength of orthodontic composites containing silver nanoparticles, titanium dioxide nanoparticles and fluoride: An in vitro study. Dental Press J Orthod. 2022;27(5):e222067. https://doi.org/10.1590/2177-6709.27.5.e222067.oar

31. Assery M.K., Ajwa N., Alshamrani A., Alanazi B.J., Durgesh B.H., Matinlinna J.P. Titanium dioxide nanoparticles reinforced experimental resin composite for orthodontic bonding. Mater Res Express. 2019;6(12):125098. https://doi.org/10.1088/2053-1591/ab5a93

32. Farzanegan F., Shafaee H., Darroudi M., Rangrazi A. Effect of the incorporation of chitosan and TiO2 nanoparticles on the shear bond strength of an orthodontic adhesive: An in vitro study. J Adv Oral Res. 2021;12(2):261–266. https://doi.org/10.1177/23202068211015447

33. Moreau J.L., Sun L., Chow L.C., Xu H.H.K. Mechanical and acid neutralizing properties and bacteria inhibition of amorphous calcium phosphate dental nanocomposite. J Biomed Mater Res B Appl Biomater. 2011;98(1):80–88. https://doi.org/10.1002/jbm.b.31834

34. Tavakolinejad Z., Mohammadi Kamalabadi Y., Salehi A. Comparison of the shear bond strength of orthodontic composites containing silver and amorphous tricalcium phosphate nanoparticles: An ex vivo study. J Dent. 2023;24(3):285–292. https://doi.org/10.30476/dentjods.2022.94075.1760

35. Noori A.J., Kareem F.A. The effect of magnesium oxide nanoparticles on the antibacterial and antibiofilm properties of glass-ionomer cement. Heliyon. 2019;5(10):e02568. https://doi.org/10.1016/j.heliyon.2019.e02568

36. Beyth N., Houri-Haddad Y., Domb A., Khan W., Hazan R. Alternative antimicrobial approach: Nano-antimicrobial materials. Evid Based Complement Alternat Med 2015;(1):246012. https://doi.org/10.1155/2015/246012

37. Rangrazi A., Daneshmand M.S., Ghazvini K., Shafaee H. Effects of magnesium oxide nanoparticles incorporation on shear bond strength and antibacterial activity of an orthodontic composite: An in vitro study. Biomimetics. 2022;7(3):133. https://doi.org/10.3390/biomimetics7030133

38. Juntavee N., Juntavee A., Plongniras P. Remineralization potential of nano-hydroxyapatite on enamel and cementum surrounding margin of computer-aided design and computer-aided manufacturing ceramic restoration. Int J Nanomedicine. 2018;13:2755–2765. https://doi.org/10.2147/IJN.S165080

39. Hasan L.A. Evaluation the properties of orthodontic adhesive incorporated with nano-hydroxyapatite particles. Saudi Dent J. 2021;33(8):1190–1196. https://doi.org/10.1016/j.sdentj.2021.01.001

40. Saeed M.A., Khabeer A., Faridi M.A., Makhdoom G. Effectiveness of propolis in maintaining oral health: a scoping review. Can J Dent Hyg. 2021;55(3):167–176.

41. Sodagar A., Akhavan A., Arab S., Bahador A., Pourhajibagher M., Soudi A. Evaluation of the effect of propolis nanoparticles on antimicrobial properties and shear bond strength of orthodontic composite bon ded to bovine enamel. Front Dent. 2019;16(2):98–107. https://doi.org/10.18502/fid.v16i2.1360

42. Ahmad S.S., Siddiqui M.F., Maqbool F., Ullah I., Adnan F., Albutti A. et al. Combating cariogenic Streptococcus mutans biofilm formation and disruption with coumaric acid on dentin surface. Molecules. 2024;29(2):397. https://doi.org/10.3390/molecules29020397

43. Gandhi H.A., Srilatha K.T., Deshmukh S., Venkatesh M.P., Das T., Sharieff I. Comparison of antimicrobial efficacy of cinnamon bark oil incorporated and probiotic blend incorporated mucoadhesive patch against salivary Streptococcus mutans in caries active 7–10-year-old children: An in vivo study. Int J Clin Pediatr Dent. 2020;13(5):543–550. https://doi.org/10.5005/jp-journals-10005-1818

44. Yaseen S.N., Taqa A.A., Al-Khatib A.R. The effect of incorporation Nano Cinnamon powder on the shear bond of the orthodontic composite (an in vitro study). J Oral Biol Craniofac Res. 2020;10(2):128–134. https://doi.org/10.1016/j.jobcr.2020.03.008

45. EL-Awady A.A., Al-Khalifa H.N., Mohamed R.E., Ali M.M., Abdallah K.F., Hosny M.M. et al. Shear bond strength and antibacterial efficacy of cinnamon and titanium dioxide nanoparticles incorporated experimental orthodontic adhesive – An in vitro comparative study. Appl Sci. 2023;13(10):6294. https://doi.org/10.3390/app13106294

46. Arya S.S., Rookes J.E., Cahill D.M., Lenka S.K. Vanillin: a review on the therapeutic prospects of a popular flavouring molecule. Adv Tradit Med. 2021;21:1–17. https://doi.org/10.1007/s13596-020-00531-w

47. Maisch N.A., Bereswill S., Heimesaat M.M. Antibacterial effects of vanilla ingredients provide novel treatment options for infections with multidrug-resistant bacteria – A recent literature review. Eur J Microbiol Immunol. 2022;12(3):53–62. https://doi.org/10.1556/1886.2022.00015

48. Anishya D., Jain R.K. Vanillin-mediated green-synthesised silver nanoparticles’ characterisation and antimicrobial activity: An in-vitro study. Cureus. 2024;16(1):e51659. https://doi.org/10.7759/cureus.51659

49. Ahmed M.Kh., Alsaleem N.R., AlSamak S. The effect of vanillin nanoparticles on antimicrobial and mechanical properties of an orthodontic adhesive. J Orthod Sci. 2023;12(1):46. https://doi.org/10.4103/jos.jos_124_22

50. Sawong S., Pekthong D., Suknoppakit P., Winitchaikul T., Kaewkong W., Somran J. et al. Calotropis gigantea stem bark extracts inhibit liver cancer induced by diethylnitrosamine. Sci Rep. 2022;12(1):12151. https://doi.org/10.1038/s41598-022-16321-0

51. Chaisupasakul P., Pekthong D., Wangteeraprasert A., Kaewkong W., Somran J., Kaewpaeng N. et al. Combination of ethyl acetate fraction from Calotropis gigantea stem bark and sorafenib induces apoptosis in HepG2 cells. PLoS ONE. 2024;19(3):e0300051. https://doi.org/10.1371/journal.pone.0300051

52. Sharma M., Tandon S., Aggarwal V., Bhat K.G., Kappadi D., Chandrashekhar P., Dorwal R. Evaluation of antibacterial activity of Calotropis gigentica against Streptococcus mutans and Lactobacillus acidophilus: An in vitro comparative study. J Conserv Dent. 2015;18(6):457–460. https://doi.org/10.4103/0972-0707.168809

53. Ravuru D., Vivek Reddy G., Bhupathi A., Sunil Kumar K.T., Singaraju G.S., Mandava P. Evaluation of antimicrobial properties and shear bond strength of conventional orthodontic adhesive modified with calotropis gigantea nanoparticles: An in vitro study. Cureus. 2023;15(12):e51182. https://doi.org/10.7759/cureus.51182


Review

For citations:


Almokaddam H., Tuturov N.S., Katbeh I., Saleh A., Ibrahim I. Effect of orthodontic adhesives modified with antibacterial nanoparticles on bond strength: literature review. Endodontics Today. 2024;22(2):130-136. (In Russ.) https://doi.org/10.36377/ET-0027



Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1683-2981 (Print)
ISSN 1726-7242 (Online)