Preview

Эндодонтия Today

Расширенный поиск

Анализ химического взаимодействия полигексанида с эндодонтическими ирригантами

https://doi.org/10.36377/ET-0051

Аннотация

ВВЕДЕНИЕ. Хронический апикальный периодонтит (ХАП) представляет сложность в эндодонтии из-за микробной резистентности и недостаточной эффективности протоколов дезинфекции. Полигексанид (PHMB) является перспективным ирригантом благодаря своим антимикробным свойствам. Однако взаимодействие PHMB с другими ирригантами требует дальнейшего изучения для разработки безопасных и эффективных протоколов.

ЦЕЛЬ. Оценить химическое взаимодействие PHMB с гипохлоритом натрия (NaOCl), перекисью водорода (H2O2), ЭДТА и хлоргексидином и выявить оптимальные протоколы ирригации.

МАТЕРИАЛЫ И МЕТОДЫ. Методом высокоэффективной жидкостной хроматографии (ВЭЖХ) изучались реакции PHMB с NaOCl, H2O2, ЭДТА и хлоргексидином через 30 минут, 1 час и 3 дня. Анализировались продукты реакции и химическая стабильность.

РЕЗУЛЬТАТЫ. PHMB образует осадок при смешивании с NaOCl, полностью исчезая из раствора. Реакция с H2O2 приводит к образованию новых соединений. ЭДТА не вызывает значительных негативных реакций. Смешивание с хлоргексидином сопровождается образованием новых продуктов и осадков. Последовательное применение ЭДТА и PHMB показало совместимость и эффективность.

ВЫВОДЫ. Полигексанид является перспективным ирригантом, особенно в сочетании с ЭДТА, обеспечивая удаление смазанного слоя и антисептическое действие без отрицательных взаимодействий. NaOCl и H2O2 требуют тщательной корректировки протоколов. Необходимы дополнительные исследования для подтверждения клинической эффективности и уточнения протоколов.

Об авторах

З. С. Хабадзе
Российский университет дружбы народов им. Патриса Лумумбы
Россия

Хабадзе Зураб Суликоевич – д.м.н., доцент 

 117198, г. Москва, ул. Миклухо-Маклая, д. 6 


Конфликт интересов:

 Авторы не заявляют о конфликте интересов 



Ю. А. Генералова
Российский университет дружбы народов им. Патриса Лумумбы
Россия

Генералова Юлия Алексеевна – ассистент 

 117198, г. Москва, ул. Миклухо-Маклая, д. 6 


Конфликт интересов:

 Авторы не заявляют о конфликте интересов 



А. А. Куликова
Российский университет дружбы народов им. Патриса Лумумбы
Россия

Куликова Алена Алексеевна – ассистент 

 117198, г. Москва, ул. Миклухо-Маклая, д. 6 


Конфликт интересов:

 Авторы не заявляют о конфликте интересов 



А. Ю. Умаров
Российский университет дружбы народов им. Патриса Лумумбы
Россия

Умаров Адам Юнусович – клинический ординатор 

 117198, г. Москва, ул. Миклухо-Маклая, д. 6 


Конфликт интересов:

 Авторы не заявляют о конфликте интересов 



Ф. В. Бадалов
Российский университет дружбы народов им. Патриса Лумумбы
Россия

Бадалов Фикрет Витальевич – ассистент 

 117198, г. Москва, ул. Миклухо-Маклая, д. 6 


Конфликт интересов:

 Авторы не заявляют о конфликте интересов 



А. Вехби
Российский университет дружбы народов им. Патриса Лумумбы
Россия

Вехби Ахмад – ассистент 

 117198, г. Москва, ул. Миклухо-Маклая, д. 6 


Конфликт интересов:

 Авторы не заявляют о конфликте интересов 



Э. М. Какабадзе
Российский университет дружбы народов им. Патриса Лумумбы
Россия

Какабадзе Элисо Малхазовна – студент 

 117198, г. Москва, ул. Миклухо-Маклая, д. 6 


Конфликт интересов:

 Авторы не заявляют о конфликте интересов 



Список литературы

1. Яфутова И.В., Запевалова И.А., Сорокина Ю.А. Глобальная проблема антибиотикорезистентности. В кн.: Современная медицина: новые подходы и актуальные исследования: сб. ст. по материалам 46-й междунар. науч.-практ. конф., г. Москва, 23 марта 2021 г. М.: Интернаука; 2021. Т. 3, с. 101–113. https://doi.org/10.32743/25419854.2021.3.42.254855

2. Costa F.F.N.P., Pacheco-Yanes J., Siqueira J.F. Jr, Oliveira A.C.S., Gazzaneo I., Amorim C.A., Santos P.H.B., Alves F.R.F. Association between missed canals and apical periodontitis. Int Endod J. 2019;52(4):400–406. https://doi.org/10.1111/iej.13022

3. El Ouarti I., Chala S., Sakout M., Abdallaoui F. Prevalence and risk factors of Apical periodontitis in endodontically treated teeth: cross-sectional study in an Adult Moroccan subpopulation. BMC Oral Health. 2021;21(1):124. https://doi.org/10.1186/s12903-021-01491-6

4. Syed Ismail P.M., Apoorva K., Manasa N., Rama Krishna R., Bhowmick S., Jain S. Clinical, radiographic, and histological findings of chronic inflammatory periapical lesions – A clinical study. J Family Med Prim Care. 2020;9(1):235–238. https://doi.org/10.4103/jfmpc. jfmpc_715_19

5. Persoon I.F., Özok A.R. Definitions and epidemiology of endodontic infections. Curr Oral Health Rep. 2017;4(4):278–285. https://doi.org/10.1007/s40496- 017-0161-z

6. Жаркова О.А. Эффективность иммунокорригирующей терапии при хроническом периодонтите. Стоматолог. Минск. 2020;(3):60–67. https://doi.org/10.32993/dentist.2020.3(38).3

7. Глинкин В.В., Клемин В.А., Кондратюк Р.Б. Наличие и локализация микрофлоры в зубах с деструктивными формами периодонтитов. Университетская клиника. 2020;(3):52–56. https://doi.org/10.26435/ uc.v0i3(36).526

8. Реутов А.С., Скворцова Е.Н., Ефремова А.В., Фролова К.Е., Коновалова Е.В. Свойства микрофлоры корневого канала как прогностический критерий оценки эффективности эндодонтического лечения. Тенденции развития науки и образования. 2023;(100-4):45–47. https://doi.org/10.18411/trnio-08-2023-167

9. Faran Ali S.M., Tanwir F. Oral microbial habitat a dynamic entity. J Oral Biol Craniofac Res. 2012;2(3):181–187. https://doi.org/10.1016/j.jobcr.2012.07.001

10. Gao L., Xu T., Huang G., Jiang S., Gu Y., Chen F. Oral microbiomes: more and more importance in oral cavity and whole body. Protein Cell. 2018;9(5):488–500. https://doi.org/10.1007/s13238-018-0548-1

11. Mark Welch J.L., Ramírez-Puebla S.T., Borisy G.G. Oral microbiome geography: Micron-scale habitat and niche. Cell Host Microbe. 2020;28(2):160–168. https://doi.org/10.1016/j.chom.2020.07.009

12. Gregorczyk-Maga I., Fiema M., Kania M., JachowiczMatczak E., Romaniszyn D., Gerreth K., Klupa T., Wójkowska-Mach J. Oral microbiota-one habitat or diverse niches? a pilot study of sampling and identification of oral bacterial and fungal biota in patients with type I diabetes mellitus treated with insulin pump. Int J Environ Res Public Health. 2023;20(3):2252. https://doi.org/10.3390/ijerph20032252

13. McCracken B.A., Nathalia Garcia M. Phylum Synergistetes in the oral cavity: A possible contributor to periodontal disease. Anaerobe. 2021;68:102250. https://doi.org/10.1016/j.anaerobe.2020.102250

14. Gomes B.P.F.A., Herrera D.R. Etiologic role of root canal infection in apical periodontitis and its relationship with clinical symptomatology. Braz Oral Res. 2018;32(Suppl 1):e69. https://doi.org/10.1590/1807-3107bor-2018.vol32.0069

15. Siqueira J.F. Jr, Antunes H.S., Rôças I.N., Rachid C.T., Alves F.R. Microbiome in the apical root canal system of teeth with post-treatment apical periodontitis. PLoS ONE. 2016;11(9):e0162887. https://doi.org/10.1371/journal.pone.0162887

16. Korona-Glowniak I., Piatek D., Fornal E., Lukowiak A., Gerasymchuk Y., Kedziora A. et al. Patterns of oral microbiota in patients with apical periodontitis. J Clin Med. 2021;10(12):2707. https://doi.org/10.3390/jcm10122707

17. Siqueira J.F. Jr, Rôças I.N. Present status and future directions: Microbiology of endodontic infections. Int Endod J. 2022;55(Suppl. 3):512–530. https://doi.org/10.1111/iej.13677

18. Jakovljevic A., Ivanovic K.B. Endodontic periapical lesions are characterized with the high prevalence of viable and activemicroorganisms. J Evid Based Dent Pract. 2021;21(4):101636. https://doi.org/10.1016/j.jebdp.2021.101636

19. Глинкин В.В., Хабадзе З.С., Генералова Ю.А., Гасбанов М.А., Бадалов Ф.В., Лейзеровиц О. Роль микроэлементов в патоморфологии деструктивных форм периодонтита инфекционного характера. Эндодонтия Today. 2023;21(1):24–29. https://doi.org/10.36377/1683-2981-2023-21-1-24-29

20. Кукушкин В., Дутова А., Кукушкина Е., Смирницкая М. Анаэробная микрофлора эндодонта при хроническом апикальном периодонтите. Эндодонтия Today. 2017;15(1):13–15. Режим доступа: https://www.endodont.ru/jour/article/view/41 (дата обращения: 07.10.2024).

21. Sakko M., Tjäderhane L., Rautemaa-Richardson R. Microbiology of root canal infections. Prim Dent J. 2016;5(2):84–89. https://doi.org/10.1308/205016816819304231

22. Yoo Y.J., Perinpanayagam H., Oh S., Kim A.R., Han S.H., Kum K.Y. Endodontic biofilms: contemporary and future treatment options. Restor Dent Endod. 2019;44(1):e7. https://doi.org/10.5395/rde.2019.44.e7

23. Bouillaguet S., Manoil D., Girard M., Louis J., Gaïa N., Leo S. et al. Root Microbiota in Primary and Secondary Apical Periodontitis. Front Microbiol. 2018;9:2374. https://doi.org/10.3389/fmicb.2018.02374

24. Hashemi M.M., Holden B.S., Coburn J., Taylor M.F., Weber S., Hilton B. et al. Proteomic analysis of resistance of gram-negative bacteria to chlorhexidine and impacts on susceptibility to colistin, antimicrobial peptides, and ceragenins. Front Microbiol. 2019;10:210. https://doi.org/10.3389/fmicb.2019.00210

25. Zhao X., Yu Z., Ding T. Quorum-sensing regulation of antimicrobial resistance in bacteria. Microorganisms. 2020;8(3):425. https://doi.org/10.3390/microorganisms8030425

26. Muras A., Mallo N., Otero-Casal P., Pose-Rodríguez J.M., Otero A. Quorum sensing systems as a new target to prevent biofilm-related oral diseases. Oral Dis. 2022;28(2):307–313. https://doi.org/10.1111/odi.13689

27. Wright P.P., Ramachandra S.S. Quorum sensing and quorum quenching with a focus on cariogenic and periodontopathic oral biofilms. Microorganisms. 2022;10(9):1783. https://doi.org/10.3390/microorganisms10091783

28. Impey R.E., Hawkins D.A., Sutton J.M., Soares da Costa T.P. Overcoming intrinsic and acquired resistance mechanisms associated with the cell wall of gram-negative bacteria. Antibiotics. 2020;9(9):623. https://doi.org/10.3390/antibiotics9090623

29. Admassie M. Current review on molecular and phenotypic mechanism of bacterial resistance to antibiotic. Sci J Clin Med. 2018;7(2):13–19. https://doi.org/10.11648/j.sjcm.20180702.11

30. Gogry F.A., Siddiqui M.T., Sultan I., Haq Q.M.R. Current update on intrinsic and acquired colistin resistance mechanisms in bacteria. Front Med. 2021;8:677720. https://doi.org/10.3389/fmed.2021.677720

31. Marcinkiewicz J, Strus M, Pasich E. Antibiotic resistance: a “dark side” of biofilm-associated chronic infections. Pol Arch Med Wewn. 2013;123(6):309–313. https://doi.org/10.20452/pamw.1780

32. Saleem H.G., Seers C.A., Sabri A.N., Reynolds E.C. Dental plaque bacteria with reduced susceptibility to chlorhexidine are multidrug resistant. BMC Microbiol. 2016;16:214. https://doi.org/10.1186/s12866-016-0833-1

33. Kitagawa H., Izutani N., Kitagawa R., Maezono H., Yamaguchi M., Imazato S. Evolution of resistance to cationic biocides in Streptococcus mutans and Enterococcus faecalis. J Dent. 2016;47:18–22. https://doi.org/10.1016/j.jdent.2016.02.008

34. Kampf G. Acquired resistance to chlorhexidine – is it time to establish an “antiseptic stewardship” initiative? J Hosp Infect. 2016;94(3):213–227. https://doi.org/10.1016/j.jhin.2016.08.018

35. Giardino L., Pedullà E., Cavani F., Bisciotti F., Giannetti L., Checchi V. et al. Comparative evaluation of the penetration depth into dentinal tubules of three endodontic irrigants. Materials. 2021;14(19):5853. https://doi.org/10.3390/ma14195853

36. Bukhari S., Babaeer A. Irrigation in endodontics: A review. Curr Oral Health Rep. 2019;6:367–376. https://doi.org/10.1007/s40496-019-00241-6

37. Lisa E.L., Carac G., Lupu I.T., Iliescu A., Iliescu A.A. Chemical interactions among some antimicrobial solutions and chelating agents used in endodontics for irrigation of infected root canals. Rev Chim. 2017;68(7):1490–1495. https://doi.org/10.37358/ RC.17.7.5702

38. Versiani M.A., Martins J., Ordinola-Zapata R. Anatomical complexities affecting root canal preparation: a narrative review. Aust Dent J. 2023;68(Suppl. 1):S5–S23. https://doi.org/10.1111/adj.12992

39. Versiani M.A., Silva E.J.N.L., Souza E., De Deus G., Zuolo M. Managing canal anatomies in the context of shaping for cleaning proposal. In: De Deus G., Silva E.J.N.L., Souza E., Versiani M.A., Zuolo M. (eds) Shaping for Cleaning the Root Canals. Cham: Springer; 2022, pp. 295–370. https://doi.org/10.1007/978-3-030-84617-6_8

40. Versiani M.A., Ordinola-Zapata R. Root Canal Anatomy: Implications in biofilm disinfection. In: Chávez de Paz L., Sedgley C., Kishen A. (eds) The Root Canal Biofilm. Springer Series on Biofilms, vol 9. Berlin, Heidelberg; Springer; 2015, pp. 155–187. https://doi.org/10.1007/978-3-662-47415-0_7

41. Iandolo A. Modern Endodontics. Dent J. 2022;11(1):11. https://doi.org/10.3390/dj11010011

42. Martina S., Pisano M., Amato A., Abdellatif D., Iandolo A. Modern rotary files in minimally invasive endodontics: a case report. Front Biosci. 2021;13(2):299–304. https://doi.org/10.52586/E886

43. Kula Ł., Kalinowska J., Koczor-Rozmus A. Endodontic treatment regimens and their application in practice – survey and comparative study. Journal of Education, Health and Sport. 2021;11(7):30–43. https://doi.org/10.12775/JEHS.2021.11.07.003

44. Zehnder M. Root canal irrigants. J Endod. 2006;32(5):389–398. https://doi.org/10.1016/j.joen.2005.09.014

45. Mathur Dr.N. An Overview on staining potential of root canal irrigants and medicaments in endodontics. Int J Pollut Res. 2020;24:6997–7003.

46. Shenoy A., Bolla N., Sayish, Sarath R.K., Ram C.H., Sumlatha. Assessment of precipitate formation on interaction of irrigants used in different combinations: an in vitro study. Indian J Dent Res. 2013;24(4):451–455. https://doi.org/10.4103/0970-9290.118392

47. Wright P.P., Kahler B., Walsh L.J. Alkaline sodium hypochlorite irrigant and its chemical interactions. Materials. 2017;10(10):1147. https://doi.org/10.3390/ ma10101147

48. Zheng Y., Wang D., Ma L.Z. Effect of polyhexamethylene biguanide in combination with undecylenamidopropyl betaine or PslG on biofilm clearance. Int J Mol Sci. 2021;22(2):768. https://doi.org/10.3390/ijms22020768

49. Gadiya P, Girnar J, Dhatrak P, Ghorpade R. Review on modern day irrigation methods in endodontics. AIP Conf Proc. 2021;2358(1):100019. https://doi.org/10.1063/5.0057945

50. Boutsioukis C., Arias-Moliz M.T. Present status and future directions – irrigants and irrigation methods. Int Endod J. 2022;55 (Suppl. 3):588–612. https://doi.org/10.1111/iej.13739

51. Gomes B.P.F.A., Aveiro E., Kishen A. Irrigants and irrigation activation systems in Endodontics. Braz Dent J. 2023;34(4):1–33. https://doi.org/10.1590/0103-6440202305577

52. Zhu K., Zheng L., Xing J., Chen S., Chen R., Ren L. Mechanical, antibacterial, biocompatible and microleakage evaluation of glass ionomer cement modified by nanohydroxyapatite/polyhexamethylene biguanide. Dent Mater J. 2022;41(2):197–208. https://doi.org/10.4012/dmj.2021-096

53. Chandki R., Nikhil V., Kalyan S.S. Comparative evaluation of substantivity of two biguanides-0.2% polyhexanide and 2% chlorhexidine on human dentin. J Conserv Dent Endod. 2020;23(1):46–50. https://doi.org/10.4103/JCD.JCD_256_19

54. Dissemond J., Gerber V., Kramer A., Riepe G., Strohal R., Vasel-Biergans A., Eberlein T. A practice-oriented recommendation for treatment of critically colonised and locally infected wounds using polihexanide. J Tissue Viability. 2010;19(3):106–115. https://doi.org/10.1016/j.jtv.2010.06.002

55. Birk R., Aderhold C., Stern-Sträter J., Hörmann K., Stuck B.A., Sommer J.U. Polyhexanide-containing solution reduces ciliary beat frequency of human nasal epithelial cells in vitro. Eur Arch Otorhinolaryngol. 2015;272(2):377–383. https://doi.org/10.1007/s00405-014-3112-5

56. Wang W.-Y., Hu H.-W., Chiou J.-C., Yung K.-F., Kan C.-W. Poly (hexamethylene biguanide) hydrochloride (PHMB)-based materials: synthesis, modification, properties, determination, and application. Polym Chem. 2023;14(48):5226–5252. https://doi.org/10.1039/D3PY01148H

57. Vaz L.M., Branco R., Morais P.V., Guiomar A.J. Sterilized polyhexanide-releasing chitosan membranes with potential for use in antimicrobial wound dressings. Membranes. 2023;13(11):877. https://doi.org/10.3390/ membranes13110877

58. Goyal V. Pediatric Endodontics. Int J Clin Pediatr Dent. 2022;15(Suppl. 1):S1–S2. https://doi.org/10.5005/jpjournals-10005-2336

59. Torabinejad M., Fouad A.F., Shabahang S. Endodontics: Principles and Practice. 6th ed. Elsevier; 2020. 496 p.

60. Kuzekanani M. Latest concepts in endodontic management of pregnant patients. Int J Dent. 2023;2023:9714515. https://doi.org/10.1155/2023/9714515

61. Kuzekanani M., Gutmann J.L. Latest concepts in the endodontic management of patients with cardiovascular disorders. Eur Endod J. 2019;4(2):86–89. https://doi.org/10.14744/eej.2019.70288

62. Шумилович Б.Р., Ростовцев В.В., Биштова И.С., Хренов Д.Е., Селин Р.В. Эндодонтическое лечение периоапикальных поражений с применением биокерамических силеров. Эндодонтия Today. 2021;19(1):61–70. https://doi.org/10.36377/1683-2981-2021-19-1-61-70

63. Prado M., Santos Júnior H.M., Rezende C.M., Pinto A.C., Faria R.B., Simão R.A., Gomes B.P. Interactions between irrigants commonly used in endodontic practice: a chemical analysis. J Endod. 2013;39(4):505–510. https://doi.org/10.1016/j.joen.2012.11.050

64. Zargar N., Marashi M.A., Ashraf H., Hakopian R., Beigi P. Identification of microorganisms in persistent/secondary endodontic infections with respect to clinical and radiographic findings: bacterial culture and molecular detection. Iran J Microbiol. 2019;11(2):120–128. https://doi.org/10.18502/ijm.v11i2.1073

65. Horváth C. (ed.). High-Performance Liquid Chromatography: Advances and Perspectives. Academic Press; 2013. 342 p.

66. Hernández-Mesa M., Moreno-González D. Current role of mass spectrometry in the determination of pesticide residues in food. Separations. 2022;9(6):148. https://doi.org/10.3390/separations9060148

67. Andrés C.M.C., Pérez de la Lastra J.M., Juan C.A., Plou F.J., Pérez-Lebeña E. Hypochlorous acid chemistry in mammalian cells-influence on infection and role in various pathologies. Int J Mol Sci. 2022;23(18):10735. https://doi.org/10.3390/ijms231810735

68. Yano N., Fatima A., Jan F.M., Singh G., Kumar V., Ulla S.T. A literature review on intracanal irrigants in endodontics. IP Indian J Conserv Endod. 2021;6(1):21–24. https://doi.org/10.18231/j.ijce.2021.005

69. Pourhajibagher M., Ghorbanzadeh R., Parker S., Chiniforush N., Bahador A. The evaluation of cultivable microbiota profile in patients with secondary endodontic infection before and after photo-activated disinfection. Photodiagnosis Photodyn Ther. 2017;18:198–203. https://doi.org/10.1016/j.pdpdt.2017.02.013

70. Pourhajibagher M., Ghorbanzadeh R., Bahador A. Culture-dependent approaches to explore the prevalence of root canal pathogens from endodontic infections. Braz Oral Res. 2017;31:e108. https://doi.org/10.1590/1807-3107bor-2017.vol31.0108

71. Vitt A., Babenka A., Boström E.A., Gustafsson A., Lira Jr R., Slizen V. et al. Adjunctive antiseptic irrigation of periodontal pockets: effects on microbial and cytokine profiles. Dent J. 2020;8(4):124. https://doi.org/10.3390/dj8040124

72. Rembe J.D., Fromm-Dornieden C., Schäfer N., Böhm J.K., Stuermer E.K. Comparing two polymeric biguanides: chemical distinction, antiseptic efficacy and cytotoxicity of polyaminopropyl biguanide and polyhexamethylene biguanide. J Med Microbiol. 2016;65(8):867–876. https://doi.org/10.1099/jmm.0.000294

73. Hirsch T., Seipp H.M., Jacobsen F., Goertz O., Steinau H.U., Steinstraesser L. Antiseptics in surgery. Eplasty. 2010;10:e39.

74. Andersen L., Bertelsen M., Buitenhuis V., Carstensen A., Hannibalsen J., Larsen B.H. et al. Maintenance of indwelling urinary catheters with a novel polyhexanide-based solution: user experience. Br J Nurs. 2020;29(18):S18–S28. https://doi.org/10.12968/bjon.2020.29.18.S18

75. Brill F.H.H., Gabriel H., Brill H., Klock J.H., Steinmann J., Arndt A. Decolonization potential of 0.02% polyhexanide irrigation solution in urethral catheters under practice-like in vitro conditions. BMC Urol. 2018;18(1):49. https://doi.org/10.1186/s12894-018-0362-3

76. Janowska S., Tratkiewicz E., Matloka M., Perko P., Gaciarz M., Urban A., Wieczorek M. Safety and pharmacokinetics study of inhaled esketamine after a single dose in healthy volunteers. Eur Neuropsychopharmacol. 2019;29(Suppl. 1):S535–S536. https://doi.org/10.1016/j.euroneuro.2018.11.793

77. Patel N.V., Mathur U., Sawant S., Acharya M., Gandhi A. Three consecutive cases of ocular polyhexamethylene biguanide (PHMB) toxicity due to compounding error. Cureus. 2023;15(5):e38540. https://doi.org/10.7759/cureus.38540

78. Tuft S., Bunce C., De S., Thomas J. Utility of investigation for suspected microbial keratitis: a diagnostic accuracy study. Eye. 2023;37(3):415–420. https://doi.org/10.1038/s41433-022-01952-4

79. Shu C., Chen Y., Zhang Z., Lei Y., Xu J., Lao W. et al. A polyhexamethylene biguanide-assembly assisted strategy of dentin bonding greatly promotes bonding effects and caries treatment. J Mater Chem B. 2023;11(45):10908–10922. https://doi.org/10.1039/D3TB02083E

80. Rosin M., Welk A., Bernhardt O., Ruhnau M., Pitten F.A., Kocher T., Kramer A. Effect of a polyhexamethylene biguanide mouthrinse on bacterial counts and plaque. J Clin Periodontol. 2001;28(12):1121–1126. https://doi.org/10.1034/j.1600-051x.2001.281206.x

81. Welk A., Splieth C.H., Schmidt-Martens G., Schwahn Ch., Kocher T., Kramer A., Rosin M. The effect of a polyhexamethylene biguanide mouthrinse compared with a triclosan rinse and a chlorhexidine rinse on bacterial counts and 4-day plaque re-growth. J Clin Periodontol. 2005;32(5):499–505. https://doi.org/0.1111/j.1600-051X.2005.00702.x

82. Dong W., Chen R., Lin Y.T., Huang Z.X., Bao G.J., He X.Y. A novel zinc oxide eugenol modified by polyhexamethylene biguanide: Physical and antimicrobial properties. Dent Mater J. 2020;39(2):200–205. https://doi.org/10.4012/dmj.2018-425

83. Jia M., Nai Z., Han Y., Huang Z., Wang J., He X. Physical and biological properties of a novel root canal sealer modified by polyhexamethylene guanidine. Dent Mater J. 2020;39(1):141–147. https://doi.org/10.4012/dmj.2018-154

84. Thomas J.E., Sem D.S. An in vitro spectroscopic analysis to determine whether para-chloroaniline is produced from mixing sodium hypochlorite and chlorhexidine. J Endod. 2010;36(2):315–317. https://doi.org/10.1016/j.joen.2009.10.028

85. Orhan E.O., Irmak Ö., Hür D., Yaman B.C., Karabucak B. Does para-chloroaniline really form after mixing sodium hypochlorite and chlorhexidine? J Endod. 2016;42(3):455–459. https://doi.org/10.1016/j.joen.2015.12.024

86. Bueso V., Parikh N., Terlier T., Holland J.N., Sarmast N.D., Jeong J.W. Comparative evaluation of intermediate solutions in prevention of brown precipitate formed from sodium hypochlorite and chlorhexidine gluconate. Clin Exp Dent Res. 2022;8(6):1591–1597. https://doi.org/10.1002/cre2.654

87. Alberto A.P.L., Oliveira D.D.S., Oliveira H.E., Maciel A.C.C., Belladonna F.G., Silva E.J.N.L.D. Does sodium thiosulphate avoid the formation of the brown-coloured precipitate as an intermediate irrigant between NaOCl and chlorhexidine? Aust Endod J. 2022;48(1):72–76. https://doi.org/10.1111/aej.12562

88. Poggio C., Colombo M., Scribante A., Sforza D., Bianchi S. In vitro antibacterial activity of different endodontic irrigants. Dent Traumatol. 2012;28(3):205–209. https://doi.org/10.1111/j.1600-9657.2011.01074.x

89. Kobayashi Y., Hayashi M., Yoshino F., Tamura M., Yoshida A., Ibi H. et al. Bactericidal effect of hydroxyl radicals generated from a low concentration hydrogen peroxide with ultrasound in endodontic treatment. J Clin Biochem Nutr. 2014;54(3):161–165. https://doi.org/10.3164/ jcbn.13-86

90. de Souza R.A., de Castro F.P.L., Pires O.J. Research of the major methods and clinical outcomes o irrigation in endodontics: a systematic review. MedNEXT J Med Health Sci. 2022;3(S3):e22S311. https://doi.org/10.54448/mdnt22S311

91. Ghisi A.C., Kopper P.M.P., Baldasso F.E.R., Stürmer C.P., Rossi-Fedele G., Steier L. et al. Effect of superoxidized water and sodium hypochlorite, associated or not with EDTA, on organic and inorganic components of bovine root dentin. J Endod. 2015;41(6):925–930. https://doi.org/10.1016/j.joen.2015.01.039

92. Giardino L., Bidossi A., Del Fabbro M., Savadori P., Maddalone M., Ferrari L. et al. Antimicrobial activity, toxicity and accumulated hard-tissue debris (AHTD) removal efficacy of several chelating agents. Int Endod J. 2020;53(8):1093–1110. https://doi.org/10.1111/iej.13314

93. Grzybowska M., Bober J., Olszewska M. Metforminamechanizmy działania i zastosowanie w terapii cukrzycy typu 2. Postepy Hig Med Dosw (online). 2011;65:277–285.

94. Attur K., Joy M.T., Karim R., Anil Kumar V.J., Deepika C,. Ahmed H. Comparative analysis of endodontic smear layer removal efficacy of 17% ethylenediaminetetraacetic acid, 7% maleic acid, and 2% chlorhexidine using scanning electron microscope: An in vitro study. J Int Soc Prev Community Dent. 2016;6(Suppl. 2):S160–S165. https://doi.org/10.4103/2231-0762.189755


Рецензия

Для цитирования:


Хабадзе З.С., Генералова Ю.А., Куликова А.А., Умаров А.Ю., Бадалов Ф.В., Вехби А., Какабадзе Э.М. Анализ химического взаимодействия полигексанида с эндодонтическими ирригантами. Эндодонтия Today. 2024;22(4):319-334. https://doi.org/10.36377/ET-0051

For citation:


Zurab Z.S., Generalova Yu.A., Kulikova A.A., Umarov A.Yu., Badalov F.V., Wehbe A., Kakabadze E.M. Analysis of the chemical interaction of polyhexanide with endodontic irrigants. Endodontics Today. 2024;22(4):319-334. https://doi.org/10.36377/ET-0051



Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 1683-2981 (Print)
ISSN 1726-7242 (Online)