Preview

Endodontics Today

Advanced search

Artificial intelligence in endodontics: current achievements and future prospects. A literature review

https://doi.org/10.36377/ET-0063

Abstract

INTRODUCTION. The article explores the current achievements and future prospects of artificial intelligence (AI) in endodontics, emphasizing its applications in diagnostics, treatment planning, quality control, outcome prediction, telemedicine, and educational processes. AI is highlighted as a transformative tool that enhances precision, standardization, and personalization in endodontic practice.
AIM. To systematically analyze the current state of AI application in endodontics and outline directions for further research and implementation.
MATERIALS AND METHODS. The study involved a thorough review of scientific literature obtained from major databases such as PubMed, Scopus, and Web of Science over the past five years. A critical evaluation of these publications assessed the effectiveness of AI in clinical practice and educational programs.
CONCLUSIONS. AI significantly enhances diagnostic accuracy, optimizes treatment planning, improves quality control, and expands opportunities in telemedicine and dental education. However, challenges such as high implementation costs, data security concerns, the absence of standardization, and the need for regulatory frameworks persist, necessitating further research and development of universal solutions.

About the Authors

A. V. Mitronin
Russian University of Medicine
Russian Federation

Alexander V. Mitronin – Honored Doctor of the Russian Federation, Dr. Sci. (Med.), Professor, Deputy Director of NOI Dentistry named after A.I. Evdokimova; Head of the Department of Therapeutic Dentistry and Endodontics

4, Dolgorukovskaya St., Moscow 127006


Competing Interests:

The authors report no conflict of interest.



T. A. Abakarov
Dagestan State Medical University
Russian Federation

Tagir A. Abakarov – Cand. Sci. (Med.), Associate Professor, Dean of the Faculty of Dentistry

1 Lenin Sq., Makhachkala, Republic of Dagestan, 367000


Competing Interests:

The authors report no conflict of interest.



G. M.-A. Budaichiev
Dagestan State Medical University
Russian Federation

Gasan M.-A. Budaichiev – Cand. Sci. (Med.), Assistant Professor of the Department of Therapeutic Dentistry

1 Lenin Sq., Makhachkala, Republic of Dagestan, 367000


Competing Interests:

The authors report no conflict of interest.



E. R. Osmanov
Dagestan State Medical University
Russian Federation

Eldar R. Osmanov – 5th year Student of the Faculty of Dentistry

1 Lenin Sq., Makhachkala, Republic of Dagestan, 367000


Competing Interests:

The authors report no conflict of interest.



References

1. Agrawal P., Nikhade P. Artificial intelligence in dentistry: Past, present, and future. Cureus. 2022;14(7):e27405. https://doi.org/10.7759/cureus.27405

2. Asgary S. Artificial intelligence in endodontics: A scoping review. Iran Endod J. 2024;19(2):85–98. https://doi.org/10.22037/iej.v19i2.44842

3. Khanagar SB, Alfadley A, Alfouzan K, Awawdeh M, Alaqla A, Jamleh A. Developments and performance of artificial intelligence models designed for application in endodontics: A systematic review. Diagnostics. 2023;13(3):414. https://doi.org/10.3390/diagnostics13030414

4. Asiri AF, Altuwalah AS. The role of neural artificial intelligence for diagnosis and treatment planning in endodontics: A qualitative review. Saudi Dent J. 2022;34(4):270–281. https://doi.org/10.1016/j.sdentj.2022.04.004

5. Thurzo A., Strunga M., Urban R., Surovková J., Afrashtehfar K.I. Impact of artificial intelligence on dental education: a review and guide for curriculum update. Educ Sci. 2023;13(2):150. https://doi.org/10.3390/educsci13020150

6. Asgary S. Emphasizing the impact of artificial intelligence in dentistry: A call for integration and exploration. J Dent Sci. 2023;18(4):1929–1930. https://doi.org/10.1016/j.jds.2023.06.028

7. Chen S.-L., Chen T.-Y., Mao Y.-C., Lin S.-Y., Huang Y.-Y., Chen C.-A. et al. Automated detection system based on convolution neural networks for retained root, endodontic treated teeth, and implant recognition on dental panoramic images. IEEE Sensors Journal. 2022;22(23):23293–23306. https://doi.org/10.1109/JSEN.2022.3211981

8. Lee J.H., Kim D.H., Jeong S.N., Choi S.H. Detection and diagnosis of dental caries using a deep learning-based convolutional neural network algorithm. J Dent. 2018;77:106–111. https://doi.org/10.1016/j.jdent.2018.07.015

9. Duan W., Chen Y., Zhang Q., Lin X., Yang X. Refined tooth and pulp segmentation using U-Net in CBCT image. Dentomaxillofac Radiol. 2021;50(6):20200251. https:// doi.org/10.1259/dmfr.20200251

10. Lahoud P., EzEldeen M., Beznik T., Willems H., Leite A., Van Gerven A., Jacobs R. Artificial intelligence for fast and accurate 3-dimensional tooth segmentation on cone-beam computed tomography. J Endod. 2021;47(5):827–835. https://doi.org/10.1016/j.joen.2020.12.020

11. Wang Y., Xia W., Yan Z., Zhao L., Bian X., Liu C. et al. Root canal treatment planning by automatic tooth and root canal segmentation in dental CBCT with deep multitask feature learning. Med Image Anal. 2023;85:102750. https://doi.org/10.1016/j.media.2023.102750

12. Ghaznavi Bidgoli S.A., Sharifi A., Manthouri M. Automatic diagnosis of dental diseases using convolutional neural network and panoramic radiographic images. Comput Methods Biomech Biomed Eng Imaging Vis. 2021;9(5):447–455. https://doi.org/10.1080/21681163.2020.1847200

13. Tumbelaka B.Y., Oscandar F., Baihaki F.N., Sitam S., Rukmo M. Identification of pulpitis at dental X-ray periapical radiography based on edge detection, texture description and artificial neural networks. Saudi Endod J. 2014;4(3):115–121. https://doi.org/10.4103/1658-5984.138139

14. Vodanović M., Subašić M., Milošević D., Savić Pavičin I. Artificial intelligence in medicine and dentistry. Acta Stomatol Croat. 2023;57(1):70–84. https://doi.org/10.15644/asc57/1/8

15. Mahesh Batra A., Reche A. A new era of dental care: Harnessing Artificial intelligence for better diagnosis and treatment. Cureus. 2023;15(11):e49319. https://doi.org/10.7759/cureus.49319

16. Qu Y., Lin Z., Yang Z., Lin H., Huang X., Gu L. Machine learning models for prognosis prediction in endodontic microsurgery. J Dent. 2022;118:103947. https://doi.org/10.1016/j.jdent.2022.103947

17. Karobari M.I., Adil A.H., Basheer S.N., Murugesan S., Savadamoorthi K.S., Mustafa M. et al. Evaluation of the diagnostic and prognostic accuracy of artificial intelligence in endodontic dentistry: A comprehensive review of literature. Comput Math Methods Med. 2023;2023:7049360. https://doi.org/10.1155/2023/7049360

18. Setzer F.C., Li J., Khan A.A. The use of artificial intelligence in endodontics. J Dent Res. 2024;103(9):853–862. https://doi.org/10.1177/00220345241255593

19. Meghil M.M., Rajpurohit P., Awad M.E., McKee J., Shahoumi L.A., Ghaly M. Artificial intelligence in dentistry. Dent Rev. 2022;2(1):100009. https://doi.org/10.1016/j.dentre.2021.100009

20. Li Y., Ye H., Ye F., Liu Y., Lv L., Zhang P. et al. The current situation and future prospects of simulators in dental education. J Med Internet Res. 2021;23(4):e23635. https://doi.org/10.2196/23635

21. Escobar-Castillejos D., Noguez J., Neri L., Magana A., Benes B. A review of simulators with haptic devices for medical training. J Med Syst. 2016;40(4):104. https://doi.org/10.1007/s10916-016-0459-8

22. Wang D., Li T., Zhang Y., Hou J. Survey on multisensory feedback virtual reality dental training systems. Eur J Dent Educ. 2016;20(4):248–260. https://doi.org/10.1111/eje.12173

23. Quinn F., Keogh P., McDonald A., Hussey D. A study comparing the effectiveness of conventional training and virtual reality simulation in the skills acquisition of junior dental students. Eur J Dent Educ. 2003;7(4):164–169. https://doi.org/10.1034/j.1600-0579.2003.00309.x

24. Batra P., Tagra H., Katyal S. Artificial intelligence in teledentistry. Discoveries. 2022;10(3):153. https://doi.org/10.15190/d.2022.12

25. Panahi O. Teledentistry: Expanding access to oral healthcare. J Dent Sci Res Rev Rep. 2024;6(3):1–3. https://doi.org/10.47363/JDSR/2024(6)176

26. Mohammad-Rahimi H., Sohrabniya F., Ourang S.A., Dianat O., Aminoshariae A., Nagendrababu V. et al. Artificial intelligence in endodontics: Data preparation, clinical applications, ethical considerations, limitations, and future directions. Int Endod J. 2024;57(11):1566–1595. https://doi.org/10.1111/iej.14128

27. Mörch C.M., Atsu S., Cai W., Li X., Madathil S.A., Liu X. et al. Artificial intelligence and ethics in dentistry: A scoping review. J Dent Res. 2021;100(13):1452–1460. https://doi.org/10.1177/00220345211013808

28. Srivastava A., Pradhan S., PradeepRaghav. Artificial intelligence in dentistry: the ethical and regulatory issues. NeuroQuantology. 2022;20(11):6953–6967.

29. Royapuram Parthasarathy P., Patil S.R., Dawasaz A.A., Hamid Baig F.A., Karobari M.I. Unlocking the potential: investigating dental practitioners’ willingness to embrace artificial intelligence in dental practice. Cureus. 2024;16(2):e55107. https://doi.org/10.7759/cureus.55107

30. Yu K.H., Kohane I.S. Framing the challenges of artificial intelligence in medicine. BMJ Qual Saf. 2019;28(3):238–241. https://doi.org/10.1136/bmjqs-2018-008551


Review

For citations:


Mitronin A.V., Abakarov T.A., Budaichiev G.M., Osmanov E.R. Artificial intelligence in endodontics: current achievements and future prospects. A literature review. Endodontics Today. 2025;23(1):62-70. https://doi.org/10.36377/ET-0063



Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1683-2981 (Print)
ISSN 1726-7242 (Online)