Evaluation of vitamin D supplementation in osteogenic differentiation potential of diabetic and non-diabetic dental pulp stem cells
https://doi.org/10.36377/ET-0097
Abstract
AIM. The aim of the present study was to assess the influence of vitamin D supplementation on the osteogenic differentiation potential of Dental Pulp Stem Cells (DPSC) in diabetic and non-diabetic subjects.
MATERIALS AND METHODS. The experimental study was conducted using oral mesenchymal stem cells (MSC) derived from adult dental pulp extirpated from extracted permanent premolar and third molar teeth of healthy patients and diabetic patients. Pulp tissue was extirpated, sectioned, and cultured in T25 flasks with Minimum essential medium-Alpha (MEM- α), fetal bovine serum (FBS) and antibiotic-antimycotic reagents. Stem cells were isolated, characterized via flow cytometry for specific markers, and subjected to tri-lineage differentiation which was confirmed through staining reagents such as Alizarin Red for osteogenesis, Safranin O for chondrogenesis, and Oil Red O for adipogenesis. Subsequently, influence of Vitamin D3 on the DPSCs viability was assessed employing MTT assays across varying concentrations.
RESULTS. Findings of the present study show that Vitamin D3 plays a significant role in enhancing osteogenic differentiation of DPSCs. Diabetic groups showed poor ability for bone regeneration as compared to the control group, with considerable disparity regarding biomechanical properties as well as decreased levels of hypoxia-inducible factor (HIF-1α) and vascular endothelial growth factor (VEGF). Subsequently, the study highlighted the significance of optimal vitamin D levels aiding in bone regeneration.
CONCLUSIONS. Vitamin D supplementation has shown to have a positive effect on the osteogenic differentiation of DPSCs, especially under diabetic conditions. The outcomes of this study infer the therapeutic potential of vitamin D in bone regeneration.
About the Authors
A. GaydhaniIndia
Aaishavarya Gaydhani – Department of Oral & Maxillofacial Pathology
Vidyapeeth, Pune 411018
Competing Interests:
The authors report no conflict of interest.
S. Kheur
India
Supriya Kheur – Department of Oral & Maxillofacial Pathology
Vidyapeeth, Pune 411018
Competing Interests:
The authors report no conflict of interest.
M. S. Jadhav
India
Manish Shivaji Jadhav – Department of Prosthodontics and Crown & Bridge
Vidyapeeth, Pune 411018
Competing Interests:
The authors report no conflict of interest.
L. L. Rajpurohit
India
Ladusingh L. Rajpurohit – Department of Public Health Dentistry
Vidyapeeth, Pune 411018
Competing Interests:
The authors report no conflict of interest.
N. Suresh
India
Namrata Suresh – Department of Dental Research Cell
Vidyapeeth, Pune 411018
Competing Interests:
The authors report no conflict of interest.
A. Mathur
India
Ankita Mathur – Department of Dental Research Cell
Vidyapeeth, Pune 411018
Competing Interests:
The authors report no conflict of interest.
S. Selvaraj
India
Siddharthan Selvaraj – Department of Dental Research Cell; Faculty of Dentistry
Vidyapeeth, Pune 411018;
Phnom Penh
Competing Interests:
The authors report no conflict of interest.
F. Amekpor
Ghana
Felix Amekpor – Department of Clinical Pathology
Accra
Competing Interests:
The authors report no conflict of interest.
References
1. Gronthos S., Mankani M., Brahim J., Robey P.G., Shi S. Postnatal human dental pulp stem cells (DPSCs) in vitro and in vivo. Proc Natl Acad Sci U S A. 2000;97(25):13625–13630. https://doi.org/10.1073/pnas.240309797
2. Gopinath V.K., Soumya S., Mohammad M.G. Ror β expression in activated macrophages and dental pulp stem cells. Int Endod J. 2021;54(3):388–398. https://doi.org/10.1111/iej.13431
3. Seo B.M., Miura M., Gronthos S., Bartold P.M., Batouli S., Brahim J. et al. Investigation of multipotent postnatal stem cells from human periodontal ligament. Lancet. 2004;364(9429):149–155. https://doi.org/10.1016/S0140-6736(04)16627-0
4. Sonoyama W., Liu Y., Fang D., Yamaza T., Seo B.M., Zhang C. et al. Mesenchymal stem cell-mediated functional tooth regeneration in swine. PLoS ONE. 2006;1(1):e79. https://doi.org/10.1371/journal.pone.0000079
5. Kim H., Han J.W., Lee J.Y., Choi Y.J., Sohn Y.D., Song M., Yoon Y.S. Diabetic mesenchymal stem cells are ineffective for improving limb ischemia due to their impaired angiogenic capability. Cell Transplant. 2015;24(8):1571–1584. https://doi.org/10.3727/096368914X682792
6. Mao X., Liu Y., Chen C., Shi S. Mesenchymal stem cells and their role in dental medicine. Dent Clin North Am. 2017;61(1):161–172. https://doi.org/10.1016/j.cden.2016.08.006
7. D’Aquino R., Graziano A., Sampaolesi M., Laino G., Pirozzi G., de Rosa A., Papaccio G. Human postnatal dental pulp cells co-differentiate into osteoblasts and endotheliocytes: a pivotal synergy leading to adult bone tissue formation. Cell Death Differ. 2007;14:1162–1171. https://doi.org/10.1038/sj.cdd.4402121
8. Nuti N., Corallo C., Chan B.M., Ferrari M., GeramiNaini B. Multipotent differentiation of human dental pulp stem cells: A literature review. Stem Cell Rev Rep. 2016;12(5):511–523. https://doi.org/10.1007/s12015-016-9661-9
9. Hu X., Zhong Y., Kong Y., Chen Y., Feng J., Zheng J. Lineage-specific exosomes promote the odontogenic differentiation of human dental pulp stem cells (DPSCs) through TGFβ1/smads signaling pathway via transfer of microRNAs. Stem Cell Res Ther. 2019;10(1):170. https://doi.org/10.1186/s13287-019-1278-x
10. Shi S., Robey P.G., Gronthos S. Comparison of human dental pulp and bone marrow stromal stem cells by cDNA microarray analysis. Bone. 2001;29(6):532–539. https://doi.org/10.1016/s8756-3282(01)00612-3
11. Tabatabaei F.S., Torshabi M. In vitro proliferation and osteogenic differentiation of endometrial stem cells and dental pulp stem cells. Cell Tissue Bank. 2017;18(2):239–247. https://doi.org/10.1007/s10561-017-9620-y
12. Mellanby E. An experimental investigation on rickets. Lancet. 1976;34(11):338–340. https://doi.org/10.1111/j.1753-4887.1976.tb05815.x
13. Lou Y.R., Toh T.C., Tee Y.H., Yu H. 25-Hydroxyvitamin D3 induces osteogenic differentiation of human mesenchymal stem cells. Sci Rep. 2017;7:42816. https://doi.org/10.1038/srep42816
14. Napoli J.L., Fivizzani M.A., Schnoes H.K., DeLuca H.F. Synthesis of vitamin D5: its biological activity relative to vitamins D3 and D2. Arch Biochem Biophys. 1979;197(1):119–125. https://doi.org/10.1016/0003-9861(79)90226-1
15. Bortolin R.H., da Graça Azevedo Abreu B.J., Abbott Galvão Ururahy M., Costa de Souza K.S., Bezerra J.F., Loureiro M.B. et al. Protection against T1DM-Induced Bone Loss by Zinc Supplementation: Biomechanical, Histomorphometric, and Molecular Analyses in STZ-Induced Diabetic Rats. PLoS ONE. 2015;10(5):e0125349. https://doi.org/10.1371/journal.pone.0125349
16. Li Y.L., Xiao Z.S. Advances in Runx2 regulation and its isoforms. Med Hypotheses. 2007;68(1):169–175. https://doi.org/10.1016/j.mehy.2006.06.006
17. Hough S., Fausto A., Sonn Y., Dong Jo O.K., Birge S.J., Avioli L.V. Vitamin D metabolism in the chronic streptozotocin-induced diabetic rat. Endocrinology. 1983;113(2):790–796. https://doi.org/10.1210/endo-113-2-790
18. Okazaki R., Riggs B.L., Conover C.A. Glucocorticoid regulation of insulin-like growth factor-binding protein expression in normal human osteoblast-like cells. Endocrinology. 1994;134(1):126–132. https://doi.org/10.1210/endo.134.1.7506203
19. Alblowi J., Tian C., Siqueira M.F., Kayal R.A., McKenzie E., Behl Y. et al. Chemokine expression is upregulated in chondrocytes in diabetic fracture healing. Bone. 2013;53(1):294–300. https://doi.org/10.1016/j.bone.2012.12.006
20. Skubis-Sikora A., Sikora B., Witkowska A., Mazurek U., Gola J. Osteogenesis of adipose-derived stem cells from patients with glucose metabolism disorders. Mol Med. 2020;26(1):67. https://doi.org/10.1186/s10020-020-00192-0
21. Gopinath V.K., Soumya S., Jayakumar M.N. Osteogenic and odontogenic differentiation potential of dental pulp stem cells isolated from inflamed dental pulp tissues (I-DPSCs) by two different methods. Acta Odontol Scand. 2020;78(4):281–289. https://doi.org/10.1080/00016357.2019.1702716
22. Kumar A., Raik S., Sharma P., Rattan V., BhattacharyyaS. Primary culture of dental pulp stem cells. J Vis Exp. 2023;(195):e65223. https://doi.org/10.3791/65223
23. Delle Monache S., Martellucci S., Clementi L., Pulcini F., Santilli F., Mei C. In vitro conditioning determines the capacity of dental pulp stem cells to function as pericytelike cells. Stem Cells Dev. 2019;28(10):695–706. https://doi.org/10.1089/scd.2018.0192
24. Bagwe S., Gopalakrishnan D., Mehta V., Mathur A., Kapare K., Deshpande A. GCF and serum levels of omentin in periodontal health and disease of diabetic and non-diabetic individuals: A comparative study. Indian J Dent Res. 2020;31(4):520–525. https://doi.org/10.4103/ijdr.IJDR_796_18
25. Qu C., Brohlin M., Kingham P.J., Kelk P. Evaluation of growth, stemness, and angiogenic properties of dental pulp stem cells cultured in cGMP xeno-/serum-free medium. Cell Tissue Res. 2020;380(1):93–105. https://doi.org/10.1007/s00441-019-03160-1
26. Roato I., Chinigò G., Genova T., Munaron L., Mussano F. Oral cavity as a source of mesenchymal stem cells useful for regenerative medicine in dentistry. Biomedicines. 2021;9(9):1085. https://doi.org/10.3390/biomedicines9091085
27. Labedz-Maslowska A., Bryniarska N., Kubiak A., Kaczmarzyk T., Sekula-Stryjewska M., Noga S. et al. Multilineage differentiation potential of human dental pulp stem cells-impact of 3D and hypoxic environment on osteogenesis in vitro. Int J Mol Sci. 2020;21(17):6172. https://doi.org/10.3390/ijms21176172
28. Poltavtseva R.A., Nikonova Y.A., Selezneva I.I., Yaroslavtseva A.K., Stepanenko V.N., Esipov R.S. et al. Mesenchymal stem cells from human dental pulp: isolation, characteristics, and potencies of targeted differentiation. Bull Exp Biol Med. 2014;158(1):164–169. https://doi.org/10.1007/s10517-014-2714-7
29. Bagwe S., Mehta V., Mathur A., Kumbhalwar A., Bhati A. Role of various pharmacologic agents in alveolar bone regeneration: A review. Natl J Maxillofac Surg. 2023;14(2):190–197. https://doi.org/10.4103/njms.njms_436_21
30. Khanna-Jain R., Vuorinen A., Sándor G.K., Suuronen R., Miettinen S. Vitamin D(3) metabolites induce osteogenic differentiation in human dental pulp and human dental follicle cells. J Steroid Biochem Mol Biol. 2010;122(4):133–141. https://doi.org/10.1016/j.jsbmb.2010.08.001
31. Andrukhov O., Blufstein A., Behm C., Moritz A., RauschFan X. Vitamin D3 and dental mesenchymal stromal cells. Appl. Sci. 2020;10(13):4527. https://doi.org/10.3390/app10134527
32. Ghadge K.K., Shetty S.K., Kulloli A., Martande S., Mehta V., Gopalakrishnan D. et al. The effect of non-surgical periodontal therapy on glycemic control in Indian diabetics with periodontal disease – A systematic review and meta-analysis. Dent J. 2025;58(2):198–206. https://doi.org/10.20473/j.djmkg.v58.i2.p198-206
Supplementary files
Review
For citations:
Gaydhani A., Kheur S., Jadhav M.S., Rajpurohit L.L., Suresh N., Mathur A., Selvaraj S., Amekpor F. Evaluation of vitamin D supplementation in osteogenic differentiation potential of diabetic and non-diabetic dental pulp stem cells. Endodontics Today. 2025;23(2):205-215. https://doi.org/10.36377/ET-0097