Preview

Endodontics Today

Advanced search

Comparative analysis of dental parameters within 3D cephalometric analysis using artificial intelligence

https://doi.org/10.36377/ET-0125

Abstract

This study aimed to evaluate the comparability of three approaches to 3D cephalometric analysis: manual tracing in Invivo (Human Invivo), automated tracing using Diagnocat AI, and AI-assisted cephalometry in Invivo (AI Invivo). Materials and methods. A total of 30 CBCT scans were analyzed retrospectively, and measurements included overjet, overbite, incisor inclination, and interincisal angles. Statistical analysis comprised descriptive statistics, normality testing, ANOVA or Kruskal–Wallis tests with post-hoc comparisons, and intraclass correlation coefficient (ICC) evaluation. Pairwise differences were interpreted relative to pooled standard deviation (SD): <1 SD indicated comparability, 1–2 SD a moderate deviation, and ≥2 SD a large deviation.Results demonstrated that for the majority of parameters, differences across all three methods were below one SD, confirming high comparability and reproducibility. No parameters exceeded the 2 SD threshold. Diagnocat AI provided clinically acceptable outcomes while offering practical advantages such as reduced operator variability, faster processing time, and lower cost compared to manual tracing and AI Invivo. Conclusion. These findings suggest that both Diagnocat AI and AI Invivo may serve as reliable alternatives or adjuncts to manual cephalometry in orthodontic practice.

About the Authors

Z. S. Khabadze
Peoples’ Friendship University of Russia named after Patrice Lumumba (RUDN University)
Russian Federation

Zurab S. Khabadze – Dr. Sci. (Med.), Professor, Head of the Department of Therapeutic Dentistry, Medical Institute

6 Miklukho-Maklaya Str., Moscow 117198, Russian Federation


Competing Interests:

The authors report no conflict of interest.



A. Wehbe
Peoples’ Friendship University of Russia named after Patrice Lumumba (RUDN University)
Russian Federation

Ahmad Wehbe – Assistant, Department of Therapeutic Dentistry, Medical Institute

6 Miklukho-Maklaya Str., Moscow 117198, Russian Federation


Competing Interests:

The authors report no conflict of interest.



O. S. Mordanov
Peoples’ Friendship University of Russia named after Patrice Lumumba (RUDN University)
Russian Federation

Oleg S. Mordanov – Cand. Sci. (Med.), Assistant, Department of Therapeutic Dentistry, Medical Institute

6 Miklukho-Maklaya Str., Moscow 117198, Russian Federation


Competing Interests:

The authors report no conflict of interest.



References

1. Sun M., Chai Y., Chai G., Zheng X. Fully automatic robot-assisted surgery for mandibular angle split osteotomy. J Craniofac Surg. 2020;31(2):336–339. https://doi.org/10.1097/SCS.0000000000005587

2. Rahimy E., Wilson J., Tsao T.C., Schwartz S., Hubschman J.P. Robot-assisted intraocular surgery: development of the IRISS and feasibility studies in an animal model. Eye. 2013;27(8):972–978. https://doi.org/10.1038/eye.2013.105

3. Castillo D., Galvez J.M., Herrera L.J., Rojas F., Valenzuela O., Caba O. et al. Leukemia multiclass assessment and classification from Microarray and RNA-seq technologies integration at gene expression level. PLoS ONE. 2019;14(2):e0212127. https://doi.org/10.1371/journal.pone.0212127

4. Orhan K., Aktuna Belgin C., Manulis D., Golitsyna M., Bayrak S., Aksoy S. et al. Determining the reliability of diagnosis and treatment using artificial intelligence software with panoramic radiographs. Imaging Sci Dent. 2023;53(3):199–208. https://doi.org/10.5624/isd.20230109

5. Thurzo A., Urbanová W., Novák B., Czako L., Siebert T., Stano P. et al. Where is the artificial intelligence applied in dentistry? Systematic review and literature analysis. Healthcare. 2022;10(7):1269. https://doi.org/10.3390/healthcare10071269

6. Ezhov M., Gusarev M., Golitsyna M., Yates J.M., Kushnerev E., Tamimi D. et al. Clinically applicable artificial intelligence system for dental diagnosis with CBCT. Sci Rep. 2021;11(1):15006. https://doi.org/10.1038/s41598-021-94093-9 (Erratum in: Sci Rep. 2021;11(1):22217. https://doi.org/10.1038/s41598-021-01678-5)

7. Orhan K., Shamshiev M., Ezhov M., Plaksin A., Kurbanova A., Ünsal G. et al. AI-based automatic segmentation of craniomaxillofacial anatomy from CBCT scans for automatic detection of pharyngeal airway evaluations in OSA patients. Sci Rep. 2022;12(1):11863. https://doi.org/10.1038/s41598-022-15920-1

8. Urban R., Haluzová S., Strunga M., Surovková J., Lifková M., Tomášik J., Thurzo A. AI-assisted CBCT data management in modern dental practice: benefits, limitations and innovations. Electronics. 2023;12(7):1710. https://doi.org/10.3390/electronics12071710

9. Zhang C., Fan L., Zhang S., Zhao J., Gu Y. Deep learning based dental implant failure prediction from periapical and panoramic films. Quant Imaging Med Surg. 2023;13(2):935–945. https://doi.org/10.21037/qims-22-457

10. Mureșanu S., Almășan O., Hedeșiu M., Dioșan L., Dinu C., Jacobs R. Artificial intelligence models for clinical usage in dentistry with a focus on dentomaxillofacial CBCT: a systematic review. Oral Radiol. 2023;39(1):18–40. https://doi.org/10.1007/s11282-022-00660-9

11. Hwang H.W., Moon J.H., Kim M.G., Donatelli R.E., Lee S.J. Evaluation of automated cephalometric analysis based on the latest deep learning method. Angle Orthod. 2021;91(3):329–335. https://doi.org/10.2319/021220-100.1

12. Hans M.G., Palomo J.M., Valiathan M. History of imaging in orthodontics from Broadbent to cone-beam computed tomography. Am J Orthod Dentofacial Orthop. 2015;148(6):914–921. https://doi.org/10.1016/j.ajodo.2015.09.007

13. Farronato G., Salvadori S., Nolet F., Zoia A., Farronato D. Assessment of inter- and intra-operator cephalometric tracings on cone beam CT radiographs: comparison of the precision of the cone beam CT versus the latero-lateral radiograph tracing. Prog Orthod. 2014;15:1. https://doi.org/10.1186/2196-1042-15-1

14. Nishimoto S., Sotsuka Y., Kawai K., Ishise H., Kakibuchi M. Personal computer-based cephalometric landmark detection with deep learning, using cephalograms on the internet. J Craniofac Surg. 2019;30(1):91–95. https://doi.org/10.1097/SCS.0000000000004901

15. Wang C.W., Huang C.T., Hsieh M.C., Li C.H., Chang S.W., Li W.C. et al. Evaluation and comparison of anatomical landmark detection methods for cephalometric X-ray images: A grand challenge. IEEE Trans Med Imaging. 2015;34(9):1890–1900. https://doi.org/10.1109/TMI.2015.2412951

16. Arık S.Ö., Ibragimov B., Xing L. Fully automated quantitative cephalometry using convolutional neural networks. J Med Imaging. 2017;4(1):014501. https://doi.org/10.1117/1.JMI.4.1.014501

17. Serafin M., Baldini B., Cabitza F., Carrafiello G., Baselli G., Del Fabbro M. et al. Accuracy of automated 3D cephalometric landmarks by deep learning algorithms: systematic review and meta-analysis. Radiol Med. 2023;128(5):544–555. https://doi.org/10.1007/s11547-023-01629-2

18. Zamora N., Llamas J.M., Cibrián R., Gandia J.L., Paredes V. A study on the reproducibility of cephalometric landmarks when undertaking a three-dimensional (3D) cephalometric analysis. Med Oral Patol Oral Cir Bucal. 2012;17(4):e678–e688. https://doi.org/10.4317/medoral.17721

19. Phulari B. An atlas on cephalometric landmarks. London: JP Medical Ltd; 2013. 213 p.

20. Isensee F., Kickingereder P., Wick W., Bendszus M., Maier-Hein K.H. Brain tumor segmentation and radiomics survival prediction: contribution to the BRATS 2017 challenge. In: In: Crimi A., Bakas S., Kuijf H., Menze B., Reyes M. (eds) Brainlesion: Glioma, multiple sclerosis, stroke and traumatic brain injuries. BrainLes 2017. Lecture Notes in Computer Science, vol 10670. Springer, Cham; 2017, pp. 287–297. https://doi.org/10.1007/978-3-319-75238-9_25

21. Gazimagomedova A.Sh., Vardanyan M.A., Drobysheva N.S. Comparative evaluation of methods fordetermining the width of the upper jaw in growing patients. Endodontics Today. 2023;21(3):231–237. (In Russ.) https://doi.org/10.36377/1683-2981-2023-21-3-231-237

22. Sam A., Currie K., Oh H., Flores-Mir C., Lagravére-Vich M. Reliability of different three-dimensional cephalometric landmarks in cone-beam computed tomography: A systematic review. Angle Orthod. 2019;89(2):317–332. https://doi.org/10.2319/042018-302.1

23. Zemouri R., Zerhouni N., Racoceanu D. Deep learning in the biomedical applications: Recent and future status. Appl Sci. 2019;9(8):1526. https://doi.org/10.3390/app9081526

24. Alsubai S. A critical review on the 3D cephalometric analysis using machine learning. Computers. 2022;11(11):154. https://doi.org/10.3390/computers11110154

25. Das B.R., Jain P., Modi N., Soni P., Datta D., De A.. SNA and SNB measurements: a comparative assessment between measurements in conventional 2D cephalogram and 3D cone-beam computed tomography-generated values. Int J Oral Care Res. 2021;9(3):71–75. https://doi.org/10.4103/INJO.INJO_20_21

26. Kunz F., Stellzig-Eisenhauer A., Zeman F., Boldt J. Artificial intelligence in orthodontics: Evaluation of a fully automated cephalometric analysis using a customized convolutional neural network. J Orofac Orthop. 2020;81(1):52–68. https://doi.org/10.1007/s00056-019-00203-8

27. Chen Z., Mo S., Fan X., You Y., Ye G., Zhou N. A meta-analysis and systematic review comparing the effectiveness of traditional and virtual surgical planning for orthognathic surgery: Based on randomized clinical trials. J Oral Maxillofac Surg. 2021;79(2):471.e1–471.e19. https://doi.org/10.1016/j.joms.2020.09.005

28. Akhare P.J., Dagab A.M., Alle R.S., Shenoyd U., Garla V. Comparison of landmark identification and linear and angular measurements in conventional and digital cephalometry. Int J Comput Dent. 2013;16(3):241–254.

29. Zamrik O.M., İşeri H. The reliability and reproducibility of an Android cephalometric smartphone application in comparison with the conventional method. Angle Orthod. 2021;91(2):236–242. https://doi.org/10.2319/042320-345.1

30. Smołka P., Nelke K., Struzik N., Wiśniewska K., Kiryk S., Kensy J. et al. Discrepancies in cephalometric analysis results between orthodontists and radiologists and artificial intelligence: A systematic review. Appl Sci. 2024;14(12):4972. https://doi.org/10.3390/app14124972


Review

For citations:


Khabadze Z.S., Wehbe A., Mordanov O.S. Comparative analysis of dental parameters within 3D cephalometric analysis using artificial intelligence. Endodontics Today. https://doi.org/10.36377/ET-0125



Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1683-2981 (Print)
ISSN 1726-7242 (Online)