Preview

Endodontics Today

Advanced search

Biocompatibility and osteogenic potential of baghdadite, mineral trioxide aggregate, and their combination on human dental pulp stem cells: an in vitro study

https://doi.org/10.36377/ET-0128

Abstract

INTRODUCTION. Dental pulp stem cells (DPSCs) are of interest in regenerative endodontics due to their multipotency. Mineral trioxide aggregate (MTA) is highly sought after due to its biocompatibility, but the limitations of long setting time and poor handling have created interest in newer products such as Baghdadite. To evaluate the biocompatibility and osteogenic potential of Baghdadite, MTA, and their combination on DPSCs using MTT and Alizarin Red assay.

MATERIALS AND METHODS. DPSCs were cultured and characterized by flow cytometry and CFU assays. Experimental groups (MTA, Baghdadite, MTA+Baghdadite) were exposed to cytotoxicity test (MTT assay) and mineralization test (Alizarin Red staining).

RESULTS. Cell viability of all the groups was higher than control. Combination group showed maximum viability (mean OD: 0.4066) than Baghdadite (0.3975) and MTA (0.3563). Alizarin Red staining showed the maximum mineralization in combination group (mean OD: 1.7069) than MTA (0.5788) and Baghdadite (0.4020).

CONCLUSIONS. The association of MTA and Baghdadite showed improved biocompatibility and osteogenic ability, which is promising for application as a pulp-capping agent in regenerative endodontics.

About the Authors

A. Tapkir
Dr. D.Y. Patil Dental College and Hospital, Dr. D.Y. Patil Vidyapeeth
India

Ankita Tapkir – Department of Pedodontics and Preventive Dentistry

Pune 411018 India


Competing Interests:

 The authors report no conflict of interest.



N. Rathi
Dr. D.Y. Patil Dental College and Hospital, Dr. D.Y. Patil Vidyapeeth
India

Nilesh Rathi – Department of Pedodontics and Preventive Dentistry

Pune 411018 India


Competing Interests:

 The authors report no conflict of interest.



A. Kharat
Dr. D.Y. Patil Dental College and Hospital, Dr. D.Y. Patil Vidyapeeth
India

Avinash Kharat – Scientist, Regenerative Medicine Laboratory

Pune 411018 India


Competing Interests:

 The authors report no conflict of interest.



N. Mante
Dr. D.Y. Patil Dental College and Hospital, Dr. D.Y. Patil Vidyapeeth
India

Nishant Mante – Research Scientist, Regenerative Medicine Laboratory

Pune 411018 India


Competing Interests:

 The authors report no conflict of interest.



A. Tasgaonkar
Dr. D.Y. Patil Dental College and Hospital, Dr. D.Y. Patil Vidyapeeth
India

Aditi Tasgaonkar – Department of Pedodontics and Preventive Dentistry

Pune 411018 India


Competing Interests:

 The authors report no conflict of interest.



T. Noor
Dr. D.Y. Patil Dental College and Hospital, Dr. D.Y. Patil Vidyapeeth
India

Toufiq Noor – Department of Dental Research Cell

Pune 411018 India


Competing Interests:

 The authors report no conflict of interest.



References

1. Alothman F.A., Hakami L.S., Alnasser A., AlGhamdi F.M., Alamri A.A., Almutairii B.M. Recent advances in regenerative endodontics: A review of current techniques and future directions. Cureus. 2024;16(11):e74121. https://doi.org/10.7759/cureus.74121

2. Kwack K.H., Lee H.W. Clinical potential of dental pulp stem cells in pulp regeneration: Current endodontic progress and future perspectives. Front Cell Dev Biol. 2022;10:857066. https://doi.org/10.3389/fcell.2022.857066

3. Ledesma-Martínez E., Mendoza-Núñez V.M., Santiago-Osorio E. Mesenchymal stem cells derived from dental pulp: A review. Stem Cells Int. 2016;2016:4709572. https://doi.org/10.1155/2016/4709572

4. Bai X., Cao R., Wu D., Zhang H., Yang F., Wang L. Dental pulp stem cells for bone tissue engineering: A literature review. Stem Cells Int. 2023;2023:7357179. http://doi.org/10.1155/2023/7357179

5. Binhezaim A., Almutairi T. Dental pulp stem cells: Biology and promise for regenerative medicine. Int J Pharm Investig. 2023;13(3):455–470. https://doi.org/10.5530/ijpi.13.3.057

6. Torabinejad M., Watson T.F., Pitt Ford T.R. Sealing ability of a mineral trioxide aggregate when used as a root end filling material. J Endod. 1993;19(12):591–595. https://doi.org/10.1016/S0099-2399(06)80271-2

7. Parirokh M., Torabinejad M. Mineral trioxide aggregate: a comprehensive literature review – Part I: chemical, physical, and antibacterial properties. J Endod. 2010;36(1):16–27. https://doi.org/10.1016/j.joen.2009.09.006

8. Babaki D., Yaghoubi S., Matin M.M. The effects of mineral trioxide aggregate on osteo/odontogenic potential of mesenchymal stem cells: a comprehensive and systematic literature review. Biomater Investig Dent. 2020;7(1):175–185. https://doi.org/10.1080/26415275.2020.1848432

9. Camilleri J. Characterization and hydration kinetics of tricalcium silicate cement for use as a dental biomaterial. Dent Mater. 2011;27(8):836–844. https://doi.org/10.1016/j.dental.2011.04.010

10. Pushpalatha C., Dhareshwar V., Sowmya S.V., Augustine D., Vinothkumar T.S., Renugalakshmi A. et al. Modified Mineral trioxide aggregate-a versatile dental material: An insight on applications and newer advancements. Front Bioeng Biotechnol. 2022;10:941826. https://doi.org/10.3389/fbioe.2022.941826

11. Jodati H., Yilmaz B., Evis Z. Calcium zirconium silicate (baghdadite) ceramic as a biomaterial. Ceram Int. 2020;46(14):21902–21909. https://doi.org/10.1016/j.ceramint.2020.06.105

12. Sadeghzade S., Liu J., Wang H., Li X., Cao J., Cao H. et al. Recent advances on bioactive baghdadite ceramic for bone tissue engineering applications: 20 years of research and innovation (a review). Mater Today Bio. 2022;17:100473. https://doi.org/10.1016/j.mtbio.2022.100473

13. Wu C., Chang J. A review of bioactive silicate ceramics. Biomed Mater. 2013;8(3):032001. https://doi.org/10.1088/1748-6041/8/3/032001

14. Roohani-Esfahani S.-I., Newman P., Zreiqat H. Design and fabrication of 3D printed scaffolds with a mechanical strength comparable to cortical bone to repair large bone defects. Sci Rep. 2016;6:19468. https://doi.org/10.1038/srep19468

15. Qiao L., Zheng X., Xie C., Wang Y., Ye L., Zhao J., Liu J. Bioactive materials in vital pulp therapy: Promoting dental pulp repair through inflammation modulation. Biomolecules. 2025;15(2):258. https://doi.org/10.3390/biom15020258

16. Ageel B.M., El Meligy O.A., Quqandi S.M.A. Mineral trioxide aggregate apexogenesis: A systematic review. J Pharm Bioallied Sci. 2023;15(Suppl. 1):S11–S17. https://doi.org/10.4103/jpbs.jpbs_530_22

17. Reyes-Carmona J.F., Felippe M.S., Felippe W.T. Biomineralization ability and interaction of mineral trioxide aggregate and white Portland cement with dentin in a phosphate-containing fluid. J Endod. 2009;35(5):731–736. https://doi.org/10.1016/j.joen.2009.02.011

18. Gomes-Filho J.E., Watanabe S., Bernabé P.F., de Moraes Costa M.T. A mineral trioxide aggregate sealer stimulated mineralization. J Endod. 2009;35(2):256–260. https://doi.org/10.1016/j.joen.2008.11.006

19. Lengheden A. Influence of pH and calcium on growth and attachment of human fibroblasts in vitro. Scand J Dent Res. 1994;102(2):130–136. https://doi.org/10.1111/j.1600-0722.1994.tb01168.x

20. Gancedo-Caravia L., Garcia-Barbero E. Influence of humidity and setting time on the push-out strength of mineral trioxide aggregate obturations. J Endod. 2006;32(9):894–896. https://doi.org/10.1016/j.joen.2006.03.004

21. Chen Y., Xu Z., Smith C., Sankar J. Recent advances on the development of magnesium alloys for biodegra-dable implants. Acta Biomater. 2014;10(11):4561–4573. https://doi.org/10.1016/j.actbio.2014.07.005

22. Schumacher T.C., Aminian A., Volkmann E., Lührs H., Zimnik D., Pede D. et al. Synthesis and mechanical evaluation of Sr-doped calcium-zirconium-silicate (baghdadite) and its impact on osteoblast cell proliferation and ALP activity. Biomed Mater. 2015;10(5):055013. https://doi.org/10.1088/1748-6041/10/5/055013

23. Huang G.T., Yamaza T., Shea L.D., Djouad F., Kuhn N.Z., Tuan R.S., Shi S. Stem/progenitor cell-mediated de novo regeneration of dental pulp with newly deposited continuous layer of dentin in an in vivo model. Tissue Eng Part A. 2010;16(2):605–615. https://doi.org/10.1089/ten.TEA.2009.0518

24. Xiao W., Wang Y., Pacios S., Li S., Graves D.T. Cellular and molecular aspects of bone remodeling. Front Oral Biol. 2016;18:9–16. https://doi.org/10.1159/000351895

25. Khatami M., Moradi Y., Rahimi Darehbagh R., Azizi D., Pooladi A., Ramezani R., Seyedoshohadaei S.A. The effect of biomaterials on human dental pulp stem cell neural differentiation: A scoping review. Cell J. 2023;25(12):813–821. https://doi.org/10.22074/cellj.2023.2007711.1375

26. Wu T., Xu C., Du R., Wen Y., Chang J., Huan Z., Zhu Y. Effects of silicate-based composite material on the proliferation and mineralization behaviors of human dental pulp cells: An in vitro assessment. Dent Mater J. 2018;37(6):889–896. https://doi.org/10.4012/dmj.2017-328

27. Zhou L., Zhao S., Xing X. Effects of different signaling pathways on odontogenic differentiation of dental pulp stem cells: A review. Front Physiol. 2023;14:1272764. https://doi.org/10.3389/fphys.2023.1272764

28. Lu Z., Wang G., Roohani-Esfahani I., Dunstan C.R., Zreiqat H. Baghdadite ceramics modulate the cross talk between human adipose stem cells and osteoblasts for bone regeneration. Tissue Eng Part A. 2014;20(5-6):992–1002. https://doi.org/10.1089/ten.TEA.2013.0470

29. Gandolfi M.G., Siboni F., Prati C. Chemical-physical properties of TheraCal, a novel light-curable MTA-like material for pulp capping. Int Endod J. 2012;45(6):571–579. https://doi.org/10.1111/j.1365-2591.2012.02013.x

30. Kim H.G., Lee B.N., Jeong H.J., Kim H.J., Kwon J., Oh S. et al. Effect of bioactive glass into mineral trioxide aggregate on the biocompatibility and mineralization potential of dental pulp stem cells. Biomater Res. 2025;29:0142. https://doi.org/10.34133/bmr.0142

31. Matsumoto S., Hayashi M., Suzuki Y., Suzuki N., Maeno M., Ogiso B. Calcium ions released from mineral trioxide aggregate convert the differentiation pathway of C2C12 cells into osteoblast lineage. J Endod. 2013;39(1):68–75. https://doi.org/10.1016/j.joen.2012.10.006

32. Bottino M.C., Kamocki K., Yassen G.H., Platt J.A., Vail M.M., Ehrlich Y. et al. Bioactive nanofibrous scaffolds for regenerative endodontics. J Dent Res. 2013;92(11):963–969. https://doi.org/10.1177/0022034513505770

33. Phang V., Malhotra R., Chen N.N., Min K.S., Yu V.S.H., Rosa V., Dubey N. Specimen shape and elution time affect the mineralization and differentiation potential of dental pulp stem cells to biodentine. J Funct Biomater. 2023;15(1):1. https://doi.org/10.3390/jfb15010001

34. Küden C., Karakaş S.N., Batmaz S.G. Comparative chemical properties, bioactivity, and cytotoxicity of resin-modified calcium silicate-based pulp capping materials on human dental pulp stem cells. Clin Oral Investig. 2022;26(11):6839–6853. https://doi.org/10.1007/s00784-022-04713-5


Review

For citations:


Tapkir A., Rathi N., Kharat A., Mante N., Tasgaonkar A., Noor T. Biocompatibility and osteogenic potential of baghdadite, mineral trioxide aggregate, and their combination on human dental pulp stem cells: an in vitro study. Endodontics Today. https://doi.org/10.36377/ET-0128



Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1683-2981 (Print)
ISSN 1726-7242 (Online)