Preview

Endodontics Today

Advanced search

Nanotechnologies as the reality of modern dentistry (literature review)

https://doi.org/10.36377/1683-2981-2020-18-2-56-61

Abstract

The prefix "nano" is used by the global scientrTc community. Highly dispersed solidphase objects which have a size from 1 to 100 nm are called nanoparticles. With the international free fulltext archive «PubMed» you can get more than 215 thousand results to the "nanoparticles" search query. Today, the accumulated theoretical knowledge is being actively integrated in dentistry. Experts are thinking about new ways to solve current professional problems. Only time will tell how successful the process of integrating narrowpro^le research into practical activities will be. Development and implementation of nanotechnological treatment are a promising direction for modern dentistry.

Aim was to study the promising areas for using nanotechnologies in dentistry, existing methods of diagnostics, treatment and prevention of the dental diseases based on the properties of nanoparticles, to review the scientrTc literature devoted to this problem.

About the Authors

A. V. Blinova
Federal State Budgetary Educational Institution of Higher Educational «Tver State Medical University» of the Ministry of Health of the Russian Federation
Russian Federation

Student

Tver



V. A. Rumyantsev
Federal State Budgetary Educational Institution of Higher Educational «Tver State Medical University» of the Ministry of Health of the Russian Federation
Russian Federation

Doctor of medical sclences, professor, head

Tver



References

1. de Los Angeles Moyaho-Bernal M, Contreras-Bulnes R, Rodriguez-Vilchis LE, Rubio-Rosas E. Changes in deciduous and permanent dentinal tubules diameter after several con-ditioning protocols: In vitro study. Microsc Res Tech., 2018, Vol. 81(8), P. 865871.

2. de Almeida J., Cechella B.C., Bernard! A.V. et al. Effectiveness of nanoparticles solutions and conventional endodontic irrigants against Enterococcus faecalis biofilm. Indian J. Dent Res., 2018, Vol. 29(3), P. 347-351.

3. Ordinola-Zapata R., Bramante C.M., Aprecio R.M. et al. Biofilm removal by 6% sodium hypochlorite activated by different irrigation techniques. Int. Endod. J., 2014, Vol. 47, P. 659-66.

4. Tong Z., Zhang Y., Wei X. The effect of human serum and dentin powder alone or in combination on the antibacterial activity of sodium hypochlorite against Enterococcus fae-calis // Arch. Oral Biol., 2019, Vol.97, P. 72-76.

5. Holland R., Gomes J.E. Filho, Cintra L.T.A. et al. Factors affecting the periapical healing process of endodontically treated teeth. J. Appl. Oral Sci., 2017, Vol. 25(5), P. 465-476.

6. DuranN.,DuranM.,deJesusM.B.etal.Silver nanoparticles: Anew view on mechanistic aspects on antimicrobial activity. Nanomedicine, 2016, Vol. 12(3), P. 789-799.

7. Noronha V.T., Paula A.J., Duran G. Silver nanoparticles in dentistry. Dent Mater., 2017, Vol. 33(10), P. 1110-1126.

8. Konigs A.M., Flemming H.C., Wingender J. Nanosilver induces a non-culturable but met-abolically active state in Pseudomonas aeruginosa. Front Microbiol., 2015, Vol. 5;6, P. 395.

9. Bahador A., Pourakbari B., Bolhari B., Hashemi F.B. In vitro evaluation of the antimicro-bial activity of nanosilver-mineral trioxide aggregate against frequent anaerobic oral path-ogens byamembrane- enclosed immersion test. Biomed J., 2015, Vol. 38(1), P. 77-83.

10. Kivanc M., Barutca B., Koparal A.T. et al. Effects of hexagonal boron nitride nanoparticles on antimicrobial and antibiofilm activities, cell viability. Mater. Sci. Eng. C Mater. Biol. Appl., 2018, Vol. 1;91, P. 115124.

11. Javidi M., Afkhami F., Zarei M. Efficacy of a combined nanoparticulate/calcium hydroxide root canal medication on elimination of Enterococcus faecalis. Aust. Endod. J., 2014, Vol. 40(2), P. 61-65.

12. Loyola-Rodriguez J.P., Torres-Mendez F., Espinosa-Cristobal L.F. et al. Antimicrobial ac-tivity of endodontic sealers and medications containing chitosan and silver nanoparticles against Enterococcus faecalis. J. Appl. Biomater. Funct. Mater., 2019, Vol. 17(3).

13. Sun X., Wang L., Lynch C.D. et al. Nanoparticles having amphiphilic silane containing Chlorin e6 with strong anti-biofilm activity against periodontitis-related pathogens. J. Dent., 2019, Vol. 81, P. 7084.

14. Abbaszadegan A., Nabavizadeh M., Gholami A. Positively charged imidazolium-based ionic liquid-protected silver nanoparticles: a promising disinfectant in root canal treatment. Int. Endod. J., 2015, Vol. 48(8), P. 790-800.

15. Chavez-Andrade G.M., Tanomaru-Filho M., Basso Bernard! M. Antimicrobial and biofilm anti-adhesion activities of silver nanoparticles and farnesol against endodontic microorgan-isms for possible application in root canal treatment. Arch. Oral Biol., 2019, Vol. 107.

16. Alves F.R., Neves M.A., Silva M.G. Antibiofilm and antibacterial activities of farnesol and xylitol as potential endodontic irrigants. Braz. Dent. J., 2013, Vol. 24(3), P. 224-9.

17. Chavez-Andrade G.M., Tanomaru-Filho M., Rodrigues E.M. et al. Cytotoxicity, genotoxi-city and antibacterial activity of poly(vinyl alcohol)-coated silver nanoparticles and farnesol as irrigating solutions. Arch. Oral Biol., 2017, Vol. 84, P. 89-93.

18. Rumiantsev V.A. Nanodentisrty: monography. Meditsinskoe informatsionnoe agentstvo, 2010. 192 s.

19. Deryabina L.V. Features of use depoforez of hydrooxigen copper-calcium in chronic apical periodontitis. Endodontics today, 2014, № 3, S. 68-71

20. Chepurova N.I., Romanenko I.G. The using of depoforez copper hydroxide of calcium in treatment of chronic periodontitis almost impassable root canals. Vestnik fizjoterapii i ku-rortologii, 2018, T. 24, №2,S.120

21. Gordeeva O.V., Ivanenko A.I., Starikova I.V., Radyshevskaya T.N. Application of physio-therapeutic methods for endodontic treatment. Vestnik fizjoterapii i kurortologii, 2018, T. 24, № 2, S. 120

22. Saidova L.A., Ramazonova Sh.Sh.K. Microbiological evaluation of the effectiveness of depo - and apexoforez in the complex treatment of chronic apical periodontitis. Molodoy uchenyy, 2019, № 27 (265), S. 77-79

23. Zablotskaya M.V., Mitronin A.V., Zablotskaya N.V. Treatment of acute apical periodonti-tis using depophoresis and cold argon plasma. Smolenskiy meditsinskiy al”manakh, 2018, № 1, S. 109-112

24. Rumiantsev V.A., Bordina G.E., Ol'khovskaia A.V., Opeshko V.V. etal. Clinical and la-boratory rationale for galvanophoresis of hydroxide copper-calcium by root canals treat-ment. Stomatology, 2015, № 1, S. 14-19

25. Zablotskaya N.V., Mitronin A.V., Fidarova K.B. Electron- microscopic evaluation of the effectiveness of treatment of dent hyperesthesia by copper calcium hydroxide galvanopho-resis. Stomatology, 2016, T. 95, № 6-2, S. 9-10

26. Mitronin A.V., Zablotskaya N.V., Zablotskaya M.V. The evaluation of effectiveness of nanoimpregnation in treatment of dental hyperesthesia in the settings of experimental study. Endodontics today, 2017, № 3, S. 22-25

27. Rumyantsev V.A., Fedotova T.A., Zablotskaya M.V. et al. A new method of complex treatment of endodontal-periodontal lesions with nonimpregnated and kupral-curettage. Tverskoy meditsinskiy zhurnal, 2018, № 1, S. 34-45

28. Silin A.V., Abramova N.E., Leonova E.V., Tumanova S.A. et al. Diagnosis and treatment planning for endo-perio lesions. Periodontology, 2015, № 3, S. 74- 76

29. Rumiantsev V.A., Fedotova T.A., Yusupova Yu.l., Riabikov M.D. et al. Efficiency of en-dodontic nano-impregnation and curretage with cupral in complex treatment of endodontic and periodontal syndrome. Mezhdunarodnyy nauchno-issledovatel'skiy zhurnal, 2017, № 10-2 (64), S. 44-48

30. Rumyantsev V.A., Avakova D.R., Blinova A.V. Host response modulation in periodontol-ogy and implantology: potential of antiinflammatory, antibacterial therapy and promising dosage forms. Review. Periodontology, 2019, T. 24, № 4, S. 372-377

31. Ni C., Zhou J., Kong N. et al. Gold nanoparticles modulate the crosstalk between macro-phages and periodontal ligament cells for periodontitis treatment. Biomaterials., 2019, Vol. 206, P. 115-132.

32. Zhang Y., Kong N., Zhang Y. et al. Size-dependent Effects of Gold Nanoparticles on Os-teogenic Differentiation of Human Periodontal Ligament Progenitor Cells. Theranostics., 2017, Vol. 6;7(5), P. 12141224.

33. Zambrano L.M.G., Brandao D.A., Rocha F.R.G. et al. Local administration of curcumin-loaded nanoparticles effectively inhibits inflammation and bone resorption associated with experimental periodontal disease. Sci. Rep., 2018, Vol. 27;8(1), P. 6652.

34. Valerio M.S., Alexis F., Kirkwood K.L. Functionalized nanoparticles containing MKP-1 agonists reduce periodontal bone loss. J. Periodontol., 2019, Vol. 90(8), P. 894-902.

35. Xue Y., Hong X., Gao J. Preparation and biological characterization of the mixture of poly(lactic-co-glycolic acid)/ chitosan/Ag nanoparticles for periodontal tissue engineering. Int. J. Nanomedicine., 2019, Vol. 11;14, P. 483-498.

36. Martin V., Ribeiro I.A.C., Alves M.M. et al. Understanding intracellular trafficking and an-ti-inflammatory effects of minocycline chitosan-nanoparticles in human gingival fibroblasts for periodontal disease treatment. Int. J. Pharm., 2019, Vol. 15; P. 572.

37. Osorio R., Alfonso-Rodriguez C.A., Medina-Castillo A.L. et al. Bioactive Polymeric Na-noparticles for Periodontal Therapy. PLoS One., 2016, Vol. 7:11(11).

38. Osorio R., Cabello I., Medina-Castillo A.L. et al. Zinc-modified nanopolymers improve the quality of resin-dentin bonded interfaces. Clin. Oral Investig., 2016, Vol. 20(9), P. 2411-2420.

39. Jones N.A., Chang S.R., Troskę W.J. Nanoparticle-Based Targeting and Detection of Mi-crocavities. Adv. Healthc. Mater., 2017, Vol. 6(1).

40. Dou Y., Guo Y., Li X. et al. Size-Tuning Ionization To Optimize Gold Nanoparticles for Simultaneous Enhanced CT Imaging and Radiotherapy. ACS Nano., 2016, Vol. 23;10(2), P. 2536-48.

41. Chhour P., Kim J., Benardo B. et al. Effect of Gold Nanoparticle Size and Coating on La-beling Monocytes for CT Tracking. Bioconjug. Chem., 2017, Vol. 18;28(1), P. 260-269.

42. Ashton J.R., Gottlin E.B., Patz E.F. et al. A com parative analysis of EGFR-targeting anti-bodies for gold nanoparticle CT imaging of lung cancer. PLoS One., 2018, Vol. 8;13(11).

43. Hainfeld J.F., O'Connor M.J., Dilmanian F.A. et al. Micro-CT enables microlocalisation and quantification of Her2-targeted gold nanoparticles within tumour regions. Br J Radiol., 2011, Vol. 84(1002), P. 526-533.

44. Ghaziyani M.F., Pourhassan Moghaddam M., Shahbazi- GahroueiD.etal. Anti-CD24bio Modified PEGylated Gold Nanoparticles as Targeted Computed Tomography Contrast Agent. Adv. Pharm. Bull., 2018, Vol. 8(4), P. 599-607.

45. Khademi S., Sarkar S., Shakeri-Zadeh A. et al. Targeted gold nanoparticles enable molecu-lar CT imaging of head and neck cancer: An in vivo study. Int. J. Biochem. Cell Biol., 2019, Vol. 114.

46. Park J., Park J., Ju E.J. et al. Multifunctional hollow gold nanoparticles designed for triple combination therapy and CT imaging. J. Control Release., 2015, Vol. 10;207, Vol. 77-85.

47. Liu S., Li H., Xia L. et al. Anti- RhoJ antibody functionalized Au@l nanoparticles as CT-guided tumor vessel-targeting radiosensitizers in patient-derived tumor xenograft model. Biomaterials., 2017, Vol. 141, P. 1-12.

48. Ashton J.R., Castle K.D., Qi Y. et al. Dual-Energy CT Imaging of Tumor Liposome Delivery After Gold Nanoparticle-Augmented Radiation Therapy. Theranostics., 2018, Vol. 12;8(7), P. 1782-1797.


Review

For citations:


Blinova A.V., Rumyantsev V.A. Nanotechnologies as the reality of modern dentistry (literature review). Endodontics Today. 2020;18(2):56-61. (In Russ.) https://doi.org/10.36377/1683-2981-2020-18-2-56-61



Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1683-2981 (Print)
ISSN 1726-7242 (Online)